Comparison of STP and TP Modes of Wire and Arc Additive Manufacturing of Aluminum–Magnesium Alloys: Forming, Microstructures and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. TP and STP Pulse Modes
2.2. Material Fabrication
2.3. Microstructural Characterization
2.4. Mechanical Property Tests
3. Results
3.1. Macromorphology of Deposited Samples
3.2. Microstructural Analysis of Deposited Samples
3.3. Mechanical Properties of Deposited Samples
4. Conclusions
- (1)
- Both the STP and TP modes effectively produced Al alloy walls via WAAM, resulting in structures primarily composed of an α-Al matrix and β (Al3Mg2) phase. The mechanical properties aligned with the standards for the casting of 5356 Al–Mg alloys.
- (2)
- The grain formation in the melt pools of both sample sets lacked a significant directional preference, displaying a mixture of equiaxed and columnar grains. The EBSD analysis revealed that the average grain size was slightly smaller in STP samples compared to TP samples.
- (3)
- The measurements across both sample sets indicated periodic fluctuations in hardness from the bottom to the top, with minimal differences in the average hardness. The STP samples exhibited marginally superior tensile strength, yield strength, and elongation at break. From the comparison of the tensile data of the bottom, middle, and top regions of the two groups of samples, the manufacturing process of the STP mode is more stable. During testing, tensile test specimens taken from both sample sets failed by ductile fracture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klein, T.R.L.; Schnall, M. Wire-arc additive manufacturing of Al-Zn5.5-Mg-Cu (ML7075): Shifting paradigms of additive manufacture-ability. Mater. Lett. 2022, 313, 131841. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Breese, P.P.; Nalam, Y.; Joshi, K.S.; Bela, K.; Kamps, T.; Volpp, J.; Kaplan, A.F.H. Oxidation in wire arc additive manufacturing of aluminium alloys. Addit. Manuf. 2021, 41, 101958. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, F.; Yuan, J.; Jia, C.P.; Ren, X.K.; Yang, L.J. Investigation on surface morphology and microstructure of double-wire plus arc additive manufactured aluminum alloys based on spectral analysis. J. Manuf. Process. 2022, 84, 639–651. [Google Scholar] [CrossRef]
- Hou, X.; Ye, X.; Qian, X.; Zhang, X.; Zhang, P.L.; Lu, Q.H.; Yu, Z.S.; Shen, C.; Wang, L.; Hua, X.M. Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti-Al Alloy Manufactured by Twin-Wire Plasma Arc Additive. Adv. Eng. Mater. 2022, 24, 2101151. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, J. External filler wire based GMA-AM process of 2219 aluminum alloy. Mater. Manuf. Process. 2020, 35, 1268–1277. [Google Scholar] [CrossRef]
- Li, C.D.; Gu, H.M.; Wang, W.; Wang, S.; Ren, L.L.; Zhai, Y.C.; Wang, Z.B.; Ming, Z. Microstructure and properties of Al-7Si-0.6Mg alloys with different Ti contents deposited by wire arc additive manufacturing. Rare Metals. 2021, 40, 2530–2537. [Google Scholar] [CrossRef]
- Huang, Y.; Hou, S.; Yang, L.; Tian, G.; Yong, Z.; Liu, S.Y. Effect of arc dynamic behavior on deposition quality of additive manufactured aluminum alloys. J. Mater. Process. Tech. 2021, 295, 117172. [Google Scholar] [CrossRef]
- Koehler, M.; Hensel, J.; Dilger, K. Effects of Thermal Cycling on Wire and Arc Additive Manufacturing of Al-5356 Components. Metals 2020, 10, 952. [Google Scholar] [CrossRef]
- Hauser, T.; Da Silva, A.; Reisch, R.T.; Volpp, J.; Kamps, T.; Kaplan, A.F.H. Fluctuation effects in Wire Arc Additive Manufacturing of aluminium analysed by high-speed imaging. J. Manuf. Process. 2020, 56, 1088–1098. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, P.L.; Li, S.W.; Wu, D.; Yu, Z.S. Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method. Int. J. Min. Met. Mater. 2020, 27, 783–791. [Google Scholar] [CrossRef]
- Pramod, R.; Kumar, S.M.; Girinath, B.; Kannan, A.R.; Kumar, N.P.; Shanmugam, N.S. Fabrication, characterisation, and finite element analysis of cold metal transfer-based wire and arc additive-manufactured aluminium alloy 4043 cylinder. Weld World 2020, 64, 1905–1919. [Google Scholar] [CrossRef]
- Derekar, K.S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Tech-Lond. 2018, 34, 895–916. [Google Scholar] [CrossRef]
- Derekar, K.S.; Addison, A.; Joshi, S.S.; Zhang, X.; Lawrence, J.; Xu, L.; Melton, G.; Griffiths, D. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int. J. Adv. Manuf. Tech. 2020, 107, 311–331. [Google Scholar] [CrossRef]
- Chen, D.; Wang, L.; He, S.; Lyu, F.Y.; Zhan, X.H. Three-dimensional forming characteristics and mechanical property of additive manufacturing aluminium-copper alloys. Mater. Sci. Tech-Lond. 2022, 38, 1519–1531. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Lu, X.; Zhang, T.G.; Wang, H. Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II. J. Mater. Res. Technol. 2023, 24, 6923–6941. [Google Scholar] [CrossRef]
- Xin, J.; Wu, D.; Chen, H.; Wang, L.; Zhou, W.L.; Wu, K.L.; Zhang, Y.L.; Shen, C.; Hua, X.M.; Li, F. Effect of droplet transfer mode on composition homogeneity of twin-wire plasma arc additively manufactured titanium aluminide. Int. J. Adv. Manuf. Tech. 2023, 124, 1723–1734. [Google Scholar] [CrossRef]
- Geng, H.; Li, J.; Xiong, J.; Lin, X. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci. Technol. Weld. Joi. 2017, 22, 472–483. [Google Scholar] [CrossRef]
- Ryan, E.; Sabin, T.; Watts, J.; Whiting, M. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J. Mater. Process. Tech. 2018, 262, 577–584. [Google Scholar] [CrossRef]
- Langelandsvik, G.; Akselsen, O.M.; Furu, T.; Roven, H.J. Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing. Materials 2021, 14, 5370. [Google Scholar] [CrossRef]
- Yu, R.; Cao, Y.; Martin, J.; Chiang, O.; Zhang, Y.M. Deep-learning based supervisory monitoring of robotized DE-GMAW process through learning from human welders. Weld. World 2023, 68, 781–791. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, B.; Xu, Y.L.; Wu, A.P.; Zhao, Y.; Zhang, H.J. Power-arc model based adaptive arc length control of P-GMAW for Al-Mg alloy. Int. J. Adv. Manuf. Tech. 2023, 128, 639–651. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.Y.; Oliveira, J.P.; He, J.J.; Guan, X.F. Spatial and directional characterization of wire and arc additive manufactured aluminum alloy using phased array ultrasonic backscattering method. Ultrasonics 2023, 132, 107024. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yan, Y.H.; Yan, Z.Z.; Liu, Y.H.; Wu, X.L.; Li, D.; Zhang, M.Y.; Liu, P.; Jin, H. Efficient manufacturing of Al-Mg alloys using controlled low heat input wire and arc additive manufacturing. J. Mater. Process. Tech. 2023, 314, 117899. [Google Scholar] [CrossRef]
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Tech-Lond 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Su, C.; Chen, X.; Gao, C.; Wang, Y. Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by Waam. Appl. Surf. Sci. 2019, 486, 431–440. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.J.; Ning, J.; Wang, X.; Zhang, G.F.; Zhang, J.X.; Na, S.; Fatemeh, B. Comparative study on the microstructures and properties of wire plus arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas. Addit. Manuf. 2020, 34, 101206. [Google Scholar]
- Aldalur, E.; Suarez, A.; Veiga, F. Metal transfer modes for Wire Arc Additive Manufacturing Al-Mg alloys: Influence of heat input in microstructure and porosity. J. Mater. Process. Technol. 2021, 297, 117271. [Google Scholar] [CrossRef]
- Sharma, S.K.; Chandra, M.; Kazmi, K.H.; Shukla, A.K.; Rajak, S. Surface Characteristics, Microstructural, and Tribological Behavior of Wire Arc Additive Manufactured Aluminum-5356 Alloy. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Breese, P.P.; Lutz, B.S.; Pantano, M.; Nalam, Y.; Bela, K.; Kamps, T.; Volpp, J.; Kaplan, A.F.H. Porosity in wire arc additive manufacturing of aluminium alloys. Addit. Manuf. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Fang, X.; Chen, G.; Yang, J.; Xie, Y.; Huang, K.; Lu, B.H. Wire and Arc Additive Manufacturing of High-Strength Al-Zn-Mg Aluminum Alloy. Front. Mater. 2021, 8, 656429. [Google Scholar] [CrossRef]
- Eimer, E.; Williams, S.; Ding, J.; Ganguly, S.; Chehab, B. Effect of Substrate Alloy Type on the Microstructure of the Substrate and Deposited Material Interface in Aluminium Wire plus Arc Additive Manufacturing. Metals 2021, 11, 916. [Google Scholar] [CrossRef]
- Subramaniam, S.; White, D.R.; Jones, J.E.; Lyons, D.W. Droplet transfer in pulsed gas metal arc welding of aluminum. Weld. J. 1998, 77, 458–464. [Google Scholar]
- Zhang, X.C.; Li, Z.W.; Gao, H.M. Online measurement of droplet size by actively exciting droplet oscillation in GMAW and GMAW-AM. J. Manuf. Process. 2023, 85, 1144–1153. [Google Scholar] [CrossRef]
- Huang, J.; Chen, T.; Huang, D.Q.; Xu, T.Z. Study on the Effect of Pulse Waveform Parameters on Droplet Transition, Dynamic Behavior of Weld Pool, and Weld Microstructure in P-GMAW. Metals 2023, 13, 199. [Google Scholar] [CrossRef]
Elements | Si | Mg | Fe | Cu | Mn | Cr | Ti | Zn | Al |
---|---|---|---|---|---|---|---|---|---|
6061-T6 | 0.4–0.8 | 0.8–1.2 | 0.7 | 0.04–0.35 | 0.05–0.20 | 0.04–0.35 | 0.15 | 0.25 | Bal |
5356 | 0.066 | 3.63 | 0.13 | 0.02 | 0.081 | 0.061 | 0.12 | 0.02 | Bal |
Sample | Position | Tensile Strength/MPa | Yield Strength/MPa | Elongation/% |
---|---|---|---|---|
STP | Top | 248.8 | 122.5 | 26.9 |
Middle | 250.6 | 124.5 | 29.2 | |
Bottom | 251.2 | 118.7 | 27.6 | |
TP | Top | 243.1 | 116.4 | 22.2 |
Middle | 247.5 | 118.9 | 24.7 | |
Bottom | 251.4 | 117.8 | 27.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Yao, P.; Li, H. Comparison of STP and TP Modes of Wire and Arc Additive Manufacturing of Aluminum–Magnesium Alloys: Forming, Microstructures and Mechanical Properties. Metals 2024, 14, 549. https://doi.org/10.3390/met14050549
Zhu Q, Yao P, Li H. Comparison of STP and TP Modes of Wire and Arc Additive Manufacturing of Aluminum–Magnesium Alloys: Forming, Microstructures and Mechanical Properties. Metals. 2024; 14(5):549. https://doi.org/10.3390/met14050549
Chicago/Turabian StyleZhu, Qiang, Ping Yao, and Huan Li. 2024. "Comparison of STP and TP Modes of Wire and Arc Additive Manufacturing of Aluminum–Magnesium Alloys: Forming, Microstructures and Mechanical Properties" Metals 14, no. 5: 549. https://doi.org/10.3390/met14050549
APA StyleZhu, Q., Yao, P., & Li, H. (2024). Comparison of STP and TP Modes of Wire and Arc Additive Manufacturing of Aluminum–Magnesium Alloys: Forming, Microstructures and Mechanical Properties. Metals, 14(5), 549. https://doi.org/10.3390/met14050549