Role of Semiconductive Property on Selective Cementation Mechanism of Iron Oxides to Gold in Galvanic Interaction with Zero-Valent Aluminum from Gold–Copper Ammoniacal Thiosulfate Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Recovery of Gold Ions from Ammoniacal Thiosulfate Solutions
2.3. Electrochemical Measurements
2.3.1. Preparation of Aluminum Electron Mediator Working Electrodes
2.3.2. Cyclic Voltammetry Measurements
2.3.3. Chronoamperometry and Electrode Surface Characterization
2.3.4. Potentiostatic Electrochemical Impedance Spectroscopy (PEIS)
2.3.5. Staircase Potentiostatic Electrochemical Impedance Spectroscopy (Mott–Schottky Plot)
2.4. UV-Vis Spectroscopy (Direct Bandgap Measurement)
3. Results and Discussion
3.1. Recovery of Gold Ions from Ammonium Thiosulfate Solution
3.2. Electrochemical Experiments
3.3. Mott–Schottkky Plot
3.4. Direct Bandgap
3.5. Proposed Selective Cementation Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zoleta, J.; Jeon, S.; Kuze, A.; Okada, N.; Park, I.; Ito, M.; Elakneswaran, Y.; Hiroyoshi, N. Selective Cementation of Gold Using an Iron Oxide and Zero-Valent Aluminum Galvanic System from Gold–Copper Ammoniacal Thiosulfate Solutions. Metals 2023, 13, 1289. [Google Scholar] [CrossRef]
- Qin, H.; Guo, X.; Tian, Q.; Zhang, L. Pyrite enhanced chlorination roasting and its efficacy in gold and silver recovery from gold tailing. Sep. Purif. Technol. 2020, 250, 117168. [Google Scholar] [CrossRef]
- Qin, H.; Guo, X.; Tian, Q.; Yu, D.; Zhang, L. Recovery of Gold from sulfide refractory gold ore: Oxidation roasting pretreatment and gold extraction. Miner. Eng. 2021, 164, 106822. [Google Scholar] [CrossRef]
- Konadu, K.T.; Huddy, R.J.; Harrison, S.T.; Osseo-Asare, K.; Sasaki, K. Sequential pretreatment of double refractory gold ore (DRGO) with a thermophilic iron oxidizing archaeon and fungal crude enzymes. Miner. Eng. 2019, 138, 86–94. [Google Scholar] [CrossRef]
- Nan, X.-Y.; Cai, X.; Jun, K. Pretreatment Process on Refractory Gold Ores with As. ISIJ Int. 2014, 54, 543–547. [Google Scholar] [CrossRef]
- Xie, F.; Chen, J.-N.; Wang, J.; Wang, W. Review of gold leaching in thiosulfate-based solutions. Trans. Nonferrous Met. Soc. China 2021, 31, 3506–3529. [Google Scholar] [CrossRef]
- Qin, H.; Guo, X.-Y.; Tian, Q.-H.; Zhang, L. Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system. Int. J. Miner. Met. Mater. 2021, 28, 956–964. [Google Scholar] [CrossRef]
- Sun, C.-B.; Zhang, X.-L.; Kou, J.; Xing, Y. A review of gold extraction using noncyanide lixiviants: Fundamentals, advancements, and challenges toward alkaline sulfur-containing leaching agents. Int. J. Miner. Met. Mater. 2020, 27, 417–431. [Google Scholar] [CrossRef]
- Tremblay, L.; Deschênes, G.; Ghali, E.; McMullen, J.; Lanouette, M. Gold recovery from a sulphide bearing gold ore by percolation leaching with thiourea. Int. J. Miner. Process. 1996, 48, 225. [Google Scholar] [CrossRef]
- Ma, C.J.; Li, J.Y.; Liu, R.J. A review of thiocyanate hydrometallurgy for the recovery of gold. Appl. Mech. Mater. 2015, 768, 53. [Google Scholar] [CrossRef]
- Ahtiainen, R.; Lundström, M. Cyanide-free gold leaching in exceptionally mild chloride solutions. J. Cleaner Prod. 2019, 234, 9. [Google Scholar] [CrossRef]
- Ahtiainen, R.; Lundström, M.; Liipo, J. Preg-robbing verification and prevention in gold chloride-bromide leaching. Miner. Eng. 2018, 128, 153. [Google Scholar] [CrossRef]
- Wang, H.-X.; Sun, C.-B.; Li, S.-Y.; Fu, P.-F.; Song, Y.-G.; Li, L.; Xie, W.-Q. Study on gold concentrate leaching by iodine-iodide. Int. J. Miner. Met. Mater. 2013, 20, 323–328. [Google Scholar] [CrossRef]
- Konyratbekova, S.; Baikonurova, A.; Ussoltseva, G.; Erust, C.; Akcil, A. Thermodynamic and kinetic of iodine-iodide leaching in gold hydrometallurgy. Trans. Nonferrous Met. Soc. China 2015, 25, 3774. [Google Scholar] [CrossRef]
- Jeon, S.; Tabelin, C.B.; Takahashi, H.; Park, I.; Ito, M.; Hiroyoshi, N. Enhanced Cementation of gold via galvanic interaction using activated carbon and zero-valent aluminum: A novel approach to recover gold ions from ammonium thiosulfate medium. Hydrometallurgy 2020, 191, 105165. [Google Scholar] [CrossRef]
- Zoleta, J.B.; Itao, G.B.; Resabal VJ, T.; Lubguban, A.A.; Corpuz, R.D.; Ito, M.; Tabelin, C.B. Improved pyrolysis behavior of ammonium polyphosphate-melamine-expandable (APP-MEL-EG) intumescent fire-retardant coating system using ceria and dolomite as additives for I-beam steel application. Heliyon 2020, 6, e03119. [Google Scholar] [CrossRef] [PubMed]
- Zoleta, J.; Itao, G.; Resabal, V.J.; Lubguban, A.; Corpuz, R.; Tabelin, C.; Hiroyoshi, N. CeO2-Dolomite as fire retardant additives on the conventional intumescent coating in steel substrate for improved performance. MATEC Web Conf. 2019, 268, 04009. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Veerawattananun, S.; Ito, M.; Hiroyoshi, N.; Igarashi, T. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions. Sci. Total Environ. 2017, 581–582, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Ke, B.; Li, Y.; Chen, J.; Zhao, C.; Chen, Y. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces. Appl. Surf. Sci. 2016, 367, 270–276. [Google Scholar] [CrossRef]
- Gelderman, K.; Lee, L.; Donne, S.W. Flat-band potential of a semiconductor: Using the mott–schottky equation. J. Chem. Educ. 2007, 84, 685. [Google Scholar] [CrossRef]
- Kennedy, J.H.; Shinar, R.; Ziegler, J.P. α-Fe2O3 Photoanodes Doped with Silicon. J. Electrochem. Soc. 1980, 127, 2307. [Google Scholar] [CrossRef]
- Albery, W.J.; O‘Shea, G.J.; Smith, A.L. Interpretation and use of mott–schottky plots at the semiconductor/electrolyte interface. J. Chem. Soc. Faraday Trans. 1996, 92, 4083–4085. [Google Scholar] [CrossRef]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176. [Google Scholar] [CrossRef]
- Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified tio2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46–55. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Ionel, Ş.; Alexandru, E. Metal Oxides-Based Semiconductors for Biosensors Applications. Front. Chem. J. 2020, 8, 2296–2646. [Google Scholar] [CrossRef]
- Balasubramani, V.; Chandraleka, S.; Rao, T.S.; Sasikumar, R.; Kuppusamy, M.R.; Sridhar, T.M. Review-Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using semiconducting metal oxides. J. Electrochem. Soc. 2020, 167, 037572. [Google Scholar] [CrossRef]
- Patil, S.A.; Shinde, D.V.; Kim, E.K.; Lee, J.K.; Mane, R.S.; Han, S.H. Photoelectrochemistry of solution processed hematite nanoparticles, nanoparticle-chains and nanorods. RSC Adv. 2012, 2, 11808–11812. [Google Scholar] [CrossRef]
- Bredar, A.R.; Chown, A.L.; Burton, A.R.; Farnum, B.H. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Appl. Energy Mater. 2020, 3, 66–98. [Google Scholar] [CrossRef]
- Van de Krol, R.; Grätzel, M. Photoelectrochemical Hydrogen Production; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-1379-0. [Google Scholar] [CrossRef]
Single System | Binary System | ||
---|---|---|---|
Sample Name | Sample ID | Sample Name | Sample ID. |
Zero-Valent Aluminum | Al | Activated Carbon/Zero-Valent Aluminum | AC/Al |
Activated Carbon | AC | Synthetic Magnetite/Zero-Valent Aluminum | Mag/Al |
Synthetic Magnetite | Mag | Synthetic Hematite/Zero-Valent Aluminum | Hem/Al |
Synthetic Hematite | Hem | Synthetic TiO2 (Anatase)/Zero-Valent Aluminum | Anatase/Al |
Synthetic TiO2 (Anatase) | Anatase | Synthetic TiO2 (Rutile)/Zero-Valent Aluminum | Rutile/Al |
Synthetic TiO2 (Rutile) | Rutile |
Semiconductors | Semiconductivity Bandgap [eV] | Semiconductivity Type |
---|---|---|
Activated Carbon (AC) | 3.5 | n-type/p-type |
Hematite, Fe2O3 | 1.9–2.2 | n-type |
Magnetite, Fe3O4 | 0.9–1.9 | n-type |
Anatase, TiO2 | 3.0 | n-type |
Rutile, TiO2 | 3.3 | n-type |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoleta, J.; Aikawa, K.; Okada, N.; Park, I.; Ito, M.; Elakneswaran, Y.; Hiroyoshi, N. Role of Semiconductive Property on Selective Cementation Mechanism of Iron Oxides to Gold in Galvanic Interaction with Zero-Valent Aluminum from Gold–Copper Ammoniacal Thiosulfate Solutions. Metals 2024, 14, 550. https://doi.org/10.3390/met14050550
Zoleta J, Aikawa K, Okada N, Park I, Ito M, Elakneswaran Y, Hiroyoshi N. Role of Semiconductive Property on Selective Cementation Mechanism of Iron Oxides to Gold in Galvanic Interaction with Zero-Valent Aluminum from Gold–Copper Ammoniacal Thiosulfate Solutions. Metals. 2024; 14(5):550. https://doi.org/10.3390/met14050550
Chicago/Turabian StyleZoleta, Joshua, Kosei Aikawa, Nako Okada, Ilhwan Park, Mayumi Ito, Yogarajah Elakneswaran, and Naoki Hiroyoshi. 2024. "Role of Semiconductive Property on Selective Cementation Mechanism of Iron Oxides to Gold in Galvanic Interaction with Zero-Valent Aluminum from Gold–Copper Ammoniacal Thiosulfate Solutions" Metals 14, no. 5: 550. https://doi.org/10.3390/met14050550
APA StyleZoleta, J., Aikawa, K., Okada, N., Park, I., Ito, M., Elakneswaran, Y., & Hiroyoshi, N. (2024). Role of Semiconductive Property on Selective Cementation Mechanism of Iron Oxides to Gold in Galvanic Interaction with Zero-Valent Aluminum from Gold–Copper Ammoniacal Thiosulfate Solutions. Metals, 14(5), 550. https://doi.org/10.3390/met14050550