Analysis of Shift in Nil-Ductility Transition Reference Temperature for RPV Steels Due to Irradiation Embrittlement Using Probability Distributions and Gamma Process
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Processing
2.2. Prediction by Probability Statistical Models
2.3. Prediction by Gamma Stochastic Process Model
3. Results
3.1. Impact Factor Analysis
3.2. Probability Statistical Model
3.3. Gamma Stochastic Model
4. Discussion
4.1. Comparison with Probability Statistical Model and Stochastic Process
4.2. Comparison with Empirical Prediction Models
- French FIS:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuya, H.; Yabuuchi, K.; Kimura, A. Radiation embrittlement of clad-HAZ of RPV of a decommissioned BWR plant. J. Nucl. Mater. 2021, 557, 153300. [Google Scholar] [CrossRef]
- Odette, G.R.; Lucas, G.E. Embrittlement of Nuclear Reactor Pressure Vessels. JOM 2001, 53, 18–22. [Google Scholar] [CrossRef]
- Fedotova, S.; Kuleshova, E. The Effect of Operational Factors on Phase Formation Patterns in the Light-Water Reactor Pressure Vessel Steels. Metals 2023, 13, 1586. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, X.; Wang, R.; Li, Y.; Liu, W. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290 °C. Acta Metall. Sin. 2022, 58, 905–910. [Google Scholar] [CrossRef]
- Kamboj, A.; Bachhav, M.N.; Dubey, M.; Almirall, N.; Yamamoto, T.; Marquis, E.A.; Odette, R. The effect of phosphorus on precipitation in irradiated reactor pressure vessel (RPV) steels. J. Nucl. Mater. 2023, 585, 154614. [Google Scholar] [CrossRef]
- Kuleshova, E.A.; Gurovich, B.A.; Bukina, Z.V.; Frolov, A.S.; Maltsev, D.A.; Krikun, E.V.; Zhurko, D.A.; Zhuchkov, G.M. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50–400) °C. J. Nucl. Mater. 2017, 490, 247–259. [Google Scholar] [CrossRef]
- Courilleau, C.; Radiguet, B.; Chaouadi, R.; Stergar, E.; Duplessi, A.; Pareige, P. Contributions of Ni-content and irradiation temperature to the kinetic of solute cluster formation and consequences on the hardening of VVER materials. J. Nucl. Mater. 2023, 585, 154616. [Google Scholar] [CrossRef]
- Kamboj, A.; Almirall, N.; Yamamoto, T.; Tumey, S.; Marquis, E.A.; Odette, R. Dose and dose rate dependence of precipitation in a series of surveillance RPV steels under ion and neutron irradiation. J. Nucl. Mater. 2024, 588, 154772. [Google Scholar] [CrossRef]
- Chaouadi, R.; Gérard, R. Neutron flux and annealing effects on irradiation hardening of RPV materials. J. Nucl. Mater. 2011, 418, 137–142. [Google Scholar] [CrossRef]
- Kryukov, A.; Debarberis, L.; von Estorff, U.; Gillemot, F.; Oszvald, F. Irradiation embrittlement of reactor pressure vessel steel at very high neutron fluence. J. Nucl. Mater. 2012, 422, 173–177. [Google Scholar] [CrossRef]
- Kolluri, M.; Martin, O.; Naziris, F.; D’Agata, E.; Gillemot, F.; Brumovsky, M.; Ulbricht, A.; Autio, J.m.; Shugailo, O.; Horvath, A. Structural MATerias research on parameters influencing the material properties of RPV steels for safe long-term operation of PWR NPPs. Nucl. Eng. Des. 2023, 406, 112236. [Google Scholar] [CrossRef]
- Edmondson, P.D.; Parish, C.M.; Nanstad, R.K. Using complimentary microscopy methods to examine Ni-Mn-Si-precipitates in highly-irradiated reactor pressure vessel steels. Acta Mater. 2017, 134, 31–39. [Google Scholar] [CrossRef]
- Miller, M.K.; Powers, K.A.; Nanstad, R.K.; Efsing, P. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences. J. Nucl. Mater. 2013, 437, 107–115. [Google Scholar] [CrossRef]
- Kuleshova, E.A.; Zhuchkov, G.M.; Fedotova, S.V.; Maltsev, D.A.; Frolov, A.S.; Fedotov, I.V. Precipitation kinetics of radiation-induced Ni-Mn-Si phases in VVER-1000 reactor pressure vessel steels under low and high flux irradiation. J. Nucl. Mater. 2021, 553, 153091. [Google Scholar] [CrossRef]
- Bing, B.; Han, X.; Jia, L.; He, X.; Zhang, C.; Yang, W. Influence analysis of alloy elements on irradiation embrittlement of RPV steel based on deep neural network. Int. J. Adv. Nucl. React. Des. Technol. 2023, 5, 44–51. [Google Scholar] [CrossRef]
- He, W.-k.; Gong, S.-y.; Yang, X.; Ma, Y.; Tong, Z.-f.; Chen, T. Study on irradiation embrittlement behavior of reactor pressure vessels by machine learning methods. Ann. Nucl. Energy 2023, 192, 109965. [Google Scholar] [CrossRef]
- Wang, J.A.; Rao, N.S.V.; Konduri, S. The development of radiation embrittlement models for US power reactor pressure vessel steels. J. Nucl. Mater. 2007, 362, 116–127. [Google Scholar] [CrossRef]
- Regulatory Guide. Radiation Embrittlement of Reactor Vessel Materials (Revision 2); Nuclear Regulation Commission: Rockville, MD, USA, 1988.
- Eason, E.D.; Odette, G.R.; Wright, J.E. Improved Embrittlement CorrrE-Lations for Reactor Pressure Vessel Steels; NUREG/CR-6551 Nuclear Regulatory Commission: Wastington, DC, USA, 1998. [Google Scholar]
- ASTM E900-15; Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials. ASTM International: Conshohocken, PA, USA, 2017.
- Tanon, A.; Grandemange, J.; Houssin, B.; Buchalet, C. French Verification of PWR Vessel Integrity; Electric Power Research Institute: Palo Alto, CA, USA, 1990. [Google Scholar]
- JEAC 4201; Nuclear Reactor Pressure Vessel Structural Material Surveillance Test Method. JEAC: Tokyo, Japan, 1991.
- Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J. Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73–76. [Google Scholar] [CrossRef]
- Xie, J.; Su, Y.; Xue, D.; Jiang, X.; Fu, H.; Huang, H. Machine Learning for Materials Research and Development. IMR 2021, 57, 1343–1361. [Google Scholar] [CrossRef]
- Liu, X.; Xu, P.; Zhao, J.; Lu, W.; Li, M.; Wang, G. Material machine learning for alloys: Applications, challenges and perspectives. J. Alloys Compd. 2022, 921, 165984. [Google Scholar] [CrossRef]
- Castin, N.; Malerba, L.; Chaouadi, R. Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks. J. Nucl. Mater. 2011, 408, 30–39. [Google Scholar] [CrossRef]
- Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M.E. Reactor pressure vessel embrittlement: Insights from neural network modelling. J. Nucl. Mater. 2018, 502, 311–322. [Google Scholar] [CrossRef]
- Li, Y.; Jin, T.; Wang, Z.; Wang, D. Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks. Nucl. Eng. Technol. 2020, 52, 2638–2651. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, G.Z.; Tu, S.T.; Xuan, F.Z. Development of pressure-temperature limit curves considering unified constraint for reactor pressure vessel. Int. J. Press. Vessel. Pip. 2024, 207, 105117. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, X.; Niu, Q.; Zhang, Y.; Zhao, B. Durability degradation simulation of RC structure based on gamma process considering two-dimensional chloride diffusion and life probabilistic prediction. Structures 2023, 48, 159–171. [Google Scholar] [CrossRef]
- Chang, M.; Huang, X.; Coolen, F.P.A.; Coolen-Maturi, T. New reliability model for complex systems based on stochastic processes and survival signature. Eur. J. Oper. Res. 2023, 309, 1349–1364. [Google Scholar] [CrossRef]
- Moran, P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Abdel-Hameed, M. A Gamma Wear Process. IEEE Trans. Reliab. 1975, R-24, 152–153. [Google Scholar] [CrossRef]
- Strauss, A.; Wendner, R.; Vidovic, A.; Zambon, I.; Frangopol, D.M. Prediction of creep and shrinkage based on gamma process models. In Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, BC, Canada, 12–15 July 2015. [Google Scholar]
- Zhang, C.; Tee, K.F. Application of gamma process and maintenance cost for fatigue damage of wind turbine blade. Energy Procedia 2019, 158, 3729–3734. [Google Scholar] [CrossRef]
- Kallen, M.J.; van Noortwijk, J.M. Optimal maintenance decisions under imperfect inspection. Reliab. Eng. Syst. Saf. 2005, 90, 177–185. [Google Scholar] [CrossRef]
- Lawless, J.; Crowder, M. Covariates and Random Effects in a Gamma Process Model with Application to Degradation and Failure. Lifetime Data Anal. 2004, 10, 213–227. [Google Scholar] [CrossRef] [PubMed]
- PLOTTER Database. Adjunct for e900-15 Technical Basis for the Equation Used to Predict Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials. Available online: https://www.astm.org/adje090015-ea.html (accessed on 1 January 2015).
- Qiangmao, W.; Guogan, S.; Rongshan, W.; Hui, D.; Ai, R.; Xiao, P.; Qi, Z.; Jing, L. Strategies for life management of French 900 MWe PWR RPV due to neutron irradiation embrittlement. Nucl. Sci. Eng. 2011, 31, 372–384. [Google Scholar]
- Ballesteros, A.; Ahlstrand, R.; Bruynooghe, C.; Chernobaeva, A.; Kevorkyan, Y.; Erak, D.; Zurko, D. Irradiation temperature, flux and spectrum effects. Prog. Nucl. Energy 2011, 53, 756–759. [Google Scholar] [CrossRef]
- Del Serrone, G.; Moretti, L. A stepwise regression to identify relevant variables affecting the environmental impacts of clinker production. J. Clean. Prod. 2023, 398, 136564. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, M.; Chen, D.; Huo, Y.; Lu, W. Dynamic grouping control of electric vehicles based on improved k-means algorithm for wind power fluctuations suppression. Glob. Energy Interconnect. 2023, 6, 542–553. [Google Scholar] [CrossRef]
- Pourshoaib, S.J.; Rajabzadeh Ghatrami, E.; Shamekhi, M.A. Comparing ultrasonic- and microwave-assisted methods for extraction of phenolic compounds from Kabkab date seed (Phoenix dactylifera L.) and stepwise regression analysis of extracts antioxidant activity. Sustain. Chem. Pharm. 2022, 30, 100871. [Google Scholar] [CrossRef]
Element | Minimum Value (wt.%) | Maximum Value (wt.%) | Mean Value (wt.%) |
---|---|---|---|
Cu | 0.04 | 0.07 | 0.06 |
Ni | 0.66 | 0.75 | 0.70 |
P | 0.005 | 0.009 | 0.007 |
Unstandardized Coefficients | Standardized Coefficients | t | p | Collinearity Diagnostics | |||
---|---|---|---|---|---|---|---|
B | Standard Error | β | VIF | Tolerance | |||
Constant | 144.975 | 13.640 | - | 10.628 | 0.000 | - | - |
Ni (w%) | 20.083 | 1.358 | 0.215 | 14.784 | 0.000 | 1.104 | 0.906 |
Mn (w%) | 9.769 | 1.424 | 0.099 | 6.862 | 0.000 | 1.087 | 0.920 |
Si (w%) | 5.061 | 4.937 | 0.015 | 1.025 | 0.305 | 1.051 | 0.951 |
P(w%) | 294.988 | 45.152 | 0.092 | 6.533 | 0.000 | 1.044 | 0.958 |
Cu (w%) | 215.541 | 14.233 | 0.216 | 15.144 | 0.000 | 1.071 | 0.934 |
Fluence [n/cm2] | 0.000 | 0.000 | 0.673 | 46.739 | 0.000 | 1.086 | 0.920 |
Temperature [] | −0.611 | 0.046 | −0.187 | −13.271 | 0.000 | 1.039 | 0.962 |
R | 0.676 | ||||||
F | F(7,1699) = 505.777, p = 0.000 | ||||||
D-W | 1.077 |
Neutron Fluence/1019·n cm−2 | 1.75 | 3.52 | 5.14 | 6.93 | |
---|---|---|---|---|---|
Normal distribution | 5% | 1.58 | 15.48 | 30.86 | 38.41 |
50% | 13.71 | 36.24 | 54.52 | 58.80 | |
95% | 25.85 | 57.01 | 78.19 | 79.19 | |
Lognormal distribution | 5% | 3.63 | 18.13 | 33.59 | 40.08 |
50% | 11.28 | 33.91 | 52.59 | 57.45 | |
95% | 35.09 | 63.41 | 82.33 | 82.33 | |
Weibull distribution | 5% | 2.67 | 15.78 | 30.38 | 36.44 |
50% | 12.61 | 36.07 | 55.02 | 59.55 | |
95% | 30.16 | 57.41 | 76.82 | 78.49 |
Type | Parameter | Parameter Equation |
---|---|---|
Normal distribution | μ | |
σ2 | ||
Weibull distribution | m | |
η |
Neutron Fluence 1019 n/cm2 | ΔRTNDT /°C | Change in ΔRTNDT /°C |
---|---|---|
0.5 | 3.910 | 3.910 |
1 | 7.820 | 3.910 |
1.5 | 11.730 | 3.910 |
2 | 16.661 | 4.931 |
2.5 | 22.641 | 5.980 |
3 | 28.621 | 5.980 |
3.5 | 34.601 | 5.980 |
4 | 40.796 | 6.196 |
4.5 | 46.985 | 6.189 |
5 | 53.173 | 6.189 |
5.5 | 55.759 | 2.586 |
6 | 57.043 | 1.284 |
6.5 | 58.327 | 1.284 |
7 | 59.611 | 1.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Li, Y.; Li, Y.; Jin, W.; Liu, J. Analysis of Shift in Nil-Ductility Transition Reference Temperature for RPV Steels Due to Irradiation Embrittlement Using Probability Distributions and Gamma Process. Metals 2024, 14, 580. https://doi.org/10.3390/met14050580
Tang K, Li Y, Li Y, Jin W, Liu J. Analysis of Shift in Nil-Ductility Transition Reference Temperature for RPV Steels Due to Irradiation Embrittlement Using Probability Distributions and Gamma Process. Metals. 2024; 14(5):580. https://doi.org/10.3390/met14050580
Chicago/Turabian StyleTang, Kaikai, Yan Li, Yuebing Li, Weiya Jin, and Jiameng Liu. 2024. "Analysis of Shift in Nil-Ductility Transition Reference Temperature for RPV Steels Due to Irradiation Embrittlement Using Probability Distributions and Gamma Process" Metals 14, no. 5: 580. https://doi.org/10.3390/met14050580
APA StyleTang, K., Li, Y., Li, Y., Jin, W., & Liu, J. (2024). Analysis of Shift in Nil-Ductility Transition Reference Temperature for RPV Steels Due to Irradiation Embrittlement Using Probability Distributions and Gamma Process. Metals, 14(5), 580. https://doi.org/10.3390/met14050580