Microstructure-Informed Prediction of Hardening in Ion-Irradiated Reactor Pressure Vessel Steels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
- Grinding with SiC-paper down to 2500 grid,
- Mechanical polishing with 3 μm and 1 μm diamond paste,
- Fine polishing with 60 nm silica suspension (Mastermet, Buehler, Leinfelden-Echterdingen, Germany).
2.2. Ion Irradiation
2.3. Transmission Electron Microscopy (TEM)
2.4. Atom Probe Tomography (APT)
2.5. Nanoindentation
3. Results
3.1. Unirradiated Microstructure
3.2. Irradiated Microstructure
3.2.1. Depth Profile of Dislocation Loops
3.2.2. Depth Profile of Solute Atom Clusters
3.3. Nanoindentation
4. Model
4.1. Theoretical Background
4.2. Case 1
4.3. Case 2
4.4. Case 3
4.5. Case 4
5. Discussion
5.1. Error Estimation
5.2. Discussion of Four Cases of Model Prediction
- The applicability of linear superposition of the hardening contributions arising from the pre-existing and irradiated microstructures is, at best, limited to specific conditions.
- Mixed (linear and square) superposition of the pre-existing and irradiated microstructures simultaneously predicts all the conditions covered by the present study well. Specifically, solid solution strengthening and grain boundary strengthening belong to linear superposition, which is dropped out for the hardening. Pre-existing forest dislocations, precipitates, irradiation-induced loops, and clusters are considered quadratically for the hardening contribution.
- The latter is even true without additional consideration of GNDs. However, a small to medium density of GNDs well below 1015 m−2 has a minor effect on the prediction and still results in good agreement with the measurements.
- In contrast, the additional consideration of a large density of GNDs gives rise to worse predictions of hardening. This indicates an upper bound for the real density of GNDs, the upper bound lying between Equations (23) and (24).
- A larger density of GNDs for an irradiated material compared with the unirradiated reference predicts an indirect increase in due to the smaller plastic zone size during nanoindentation in addition to the direct increase due to the irradiation-induced defects. Under the present conditions and in the covered range of contact depths hc, the latter contribution is dominant.
5.3. Individual Hardness Contributions
6. Conclusions
- Linear superposition of the hardening caused by the microstructure features present in the pre-existing microstructures with the irradiation-induced hardening is, at best, limited to special conditions.
- Mixed superposition of the hardening contribution from the pre-existing and irradiated microstructures, along with reported values of the obstacle strength, predicts the hardening well for all conditions covered in the present study. The term “mixed” means “linear” for grain boundary hardening and solid solution hardening but “quadratic” for the other contributions considered.
- The irradiation-induced hardening from dislocation loops and solute atom clusters is similar, although the number density of loops is lower. This is because of the larger loop size and, more prominently, because of a higher obstacle strength.
- Based on the mixed superposition law, additional consideration of GNDs yields similar predictions, which also means a good agreement if the average density of GNDs is below 1015 m−2. The agreement is worse if the average density of GNDs is above 1015 m−2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Was, G.S.; Zinkle, S.J. Toward the Use of Ion Irradiation to Predict Reactor Irradiation Effects, 2nd ed.; Rudy, J.M., Konings, R.E.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1. [Google Scholar]
- Jiao, Z.; Michalicka, J.; Was, G. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels. J. Nucl. Mater. 2018, 501, 312–318. [Google Scholar] [CrossRef]
- Xu, S.; Yao, Z.; Jenkins, M. TEM characterisation of heavy-ion irradiation damage in FeCr alloys. J. Nucl. Mater. 2009, 386, 161–164. [Google Scholar] [CrossRef]
- Taller, S.; VanCoevering, G.; Wirth, B.D.; Was, G.S. Predicting structural material degradation in advanced nuclear reactors with ion irradiation. Sci. Rep. 2021, 11, 2949. [Google Scholar] [CrossRef] [PubMed]
- Was, G.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A.; Maloy, S.; Anderoglu, O.; Sencer, B.; Hackett, M. Emulation of reactor irradiation damage using ion beams. Scr. Mater. 2014, 88, 33–36. [Google Scholar] [CrossRef]
- Bai, X.; Han, Y.; Liaw, P.K.; Wei, L. Effect of Ion Irradiation on Surface Microstructure and Nano-Hardness of SA508-IV Reactor Pressure Vessel Steel. J. Mater. Eng. Perform. 2022, 31, 1981–1990. [Google Scholar] [CrossRef]
- Iwata, K.; Takamizawa, H.; Ha, Y.; Shimodaira, M.; Okamoto, Y.; Honda, M.; Katsuyama, J.; Nishiyama, Y. EXAFS studies for atomic structural change induced by ion irradiation of a reactor pressure vessel steel. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2022, 511, 143–152. [Google Scholar] [CrossRef]
- Gasparrini, C.; Xu, A.; Short, K.; Wei, T.; Davis, J.; Palmer, T.; Bhattacharyya, D.; Edwards, L.; Wenman, M. Micromechanical testing of unirradiated and helium ion irradiated SA508 reactor pressure vessel steels: Nanoindentation vs in-situ microtensile testing. Mater. Sci. Eng. A 2020, 796, 139942. [Google Scholar] [CrossRef]
- Haušild, P. On the breakdown of the Nix-Gao model for indentation size effect. Philos. Mag. 2021, 101, 420–434. [Google Scholar] [CrossRef]
- Hosemann, P.; Kiener, D.; Wang, Y.; Maloy, S.A. Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 2012, 425, 136–139. [Google Scholar] [CrossRef]
- Ruiz-Moreno, A.; Hähner, P.; Kurpaska, L.; Jagielski, J.; Spätig, P.; Trebala, M.; Hannula, S.-P.; Merino, S.; de Diego, G.; Namburi, H. Round robin into best practices for the determination of indentation size effects. Nanomaterials 2020, 10, 130. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Kasada, R.; Takayama, Y.; Yabuuchi, K.; Kimura, A. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 2011, 86, 2658–2661. [Google Scholar] [CrossRef]
- Kasada, R.; Konishi, S.; Yabuuchi, K.; Nogami, S.; Ando, M.; Hamaguchi, D.; Tanigawa, H. Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation. Fusion Eng. Des. 2014, 89, 1637–1641. [Google Scholar] [CrossRef]
- Kareer, A.; Prasitthipayong, A.; Krumwiede, D.; Collins, D.; Hosemann, P.; Roberts, S. An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves. J. Nucl. Mater. 2018, 498, 274–281. [Google Scholar] [CrossRef]
- Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E. Nanoindentation of ion-irradiated reactor pressure vessel steels–model-based interpretation and comparison with neutron irradiation. Philos. Mag. 2018, 98, 911–933. [Google Scholar] [CrossRef]
- Vogel, K.; Heintze, C.; Chekhonin, P.; Akhmadaliev, S.; Altstadt, E.; Bergner, F. Relationships between depth-resolved primary radiation damage, irradiation-induced nanostructure and nanoindentation response of ion-irradiated Fe-Cr and ODS Fe-Cr alloys. Nucl. Mater. Energy 2020, 24, 100759. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, L. Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials. J. Nucl. Mater. 2018, 503, 110–115. [Google Scholar] [CrossRef]
- Kapoor, G.; Chekhonin, P.; Kaden, C.; Vogel, K.; Bergner, F. Microstructure-informed prediction and measurement of nanoindentation hardness of an Fe-9Cr alloy irradiated with Fe-ions of 1 and 5 MeV energy. Nucl. Mater. Energy 2022, 30, 101105. [Google Scholar] [CrossRef]
- Seeger, A.K. On the theory of radiation damage and radiation hardening. In Proceedings of the Second United Nations International Conference on The Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1–13 September 1958; United Nations: New York, NY, USA, 1958; Volume 6, pp. 250–273. [Google Scholar]
- Chen, D.; Murakami, K.; Dohi, K.; Nishida, K.; Soneda, N.; Li, Z.; Liu, L.; Sekimura, N. Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 365, 503–508. [Google Scholar] [CrossRef]
- Shimodaira, M.; Toyama, T.; Yoshida, K.; Inoue, K.; Ebisawa, N.; Tomura, K.; Yoshiie, T.; Konstantinović, M.J.; Gérard, R.; Nagai, Y. Contribution of irradiation-induced defects to hardening of a low-copper reactor pressure vessel steel. Acta Mater. 2018, 155, 402–409. [Google Scholar] [CrossRef]
- Fukumoto, K.-I.; Mabuchi, T.; Yabuuchi, K.; Fujii, K. Irradiation hardening of stainless steel model alloy after Fe-ion irradiation and post-irradiation annealing treatment. J. Nucl. Mater. 2021, 557, 153296. [Google Scholar] [CrossRef]
- Fang, Q.; Peng, J.; Chen, Y.; Li, L.; Feng, H.; Li, J.; Jiang, C.; Liaw, P.K. Hardening behaviour in the irradiated high entropy alloy. Mech. Mater. 2021, 155, 103744. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, J.; Wang, S.; Mei, L.; Yan, J.; Li, L.; Zhang, Q.; Zhu, Z.; Lv, J.; Xue, Y. Towards a reliable nanohardness-dose correlation of ion-irradiated materials from nanoindentation tests: A case study in proton-irradiated vanadium. Int. J. Plast. 2023, 171, 103804. [Google Scholar] [CrossRef]
- Lin, P.-d.; Nie, J.-f.; Lu, Y.-p.; Shi, C.-x.; Cui, S.-g.; Cui, W.-d.; He, L. Atomic irradiation defects induced hardening model in irradiated tungsten based on molecular dynamics and CPFEM. Int. J. Plast. 2024, 103895. [Google Scholar] [CrossRef]
- Yang, J.; Bai, J.; Li, J.; Fu, C.; Lei, Q.; Lin, J. Hardening behavior of nickel-base alloy irradiated by multi-energy Fe ions. J. Mater. Res. Technol. 2024, 29, 1000–1009. [Google Scholar] [CrossRef]
- Foreman, A.; Makin, M. Dislocation movement through random arrays of obstacles. Can. J. Phys. 1967, 45, 511–517. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, Y.; Lin, Y.-R.; Henry, J.; Zinkle, S.J. Defect-specific strength factors and superposition model for predicting strengthening of ion irradiated Fe18Cr alloy. J. Nucl. Mater. 2024, 588, 154823. [Google Scholar] [CrossRef]
- Monnet, G. Multiscale modeling of irradiation hardening: Application to important nuclear materials. J. Nucl. Mater. 2018, 508, 609–627. [Google Scholar] [CrossRef]
- Mattucci, M.; Cherubin, I.; Changizian, P.; Skippon, T.; Daymond, M. Indentation size effect, geometrically necessary dislocations and pile-up effects in hardness testing of irradiated nickel. Acta Mater. 2021, 207, 116702. [Google Scholar] [CrossRef]
- Lai, L.; Chekhonin, P.; Akhmadaliev, S.; Brandenburg, J.-E.; Bergner, F. Microstructural Characterization of Reactor Pressure Vessel Steels. Metals 2023, 13, 1339. [Google Scholar] [CrossRef]
- Hein, H. Deliverable of Euratom Project SOTERIA, D3.5—Set of Guidelines on Use of Experiments Carried Out in WP3, Grant Agreement No. 661913. 2019. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Kinchin, G.; Pease, R. The displacement of atoms in solids by radiation. Rep. Prog. Phys. 1955, 18, 1. [Google Scholar] [CrossRef]
- Norgett, M.; Robinson, M.; Torrens, I.M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Lefebvre, W.; Vurpillot, F.; Sauvage, X. Atom Probe Tomography: Put Theory into Practice, 1st ed.; Lefebvre, W., Vurpillot, F., Sauvage, X., Eds.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Standard DIN EN ISO 14577-1; Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters. 2015. Available online: www.beuth.de (accessed on 18 February 2024).
- Hardie, C.D.; Roberts, S.G.; Bushby, A.J. Understanding the effects of ion irradiation using nanoindentation techniques. J. Nucl. Mater. 2015, 462, 391–401. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, Y.; Agarwal, S.; Henry, J.; Zinkle, S.J. Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths. Mater. Des. 2022, 213, 110317. [Google Scholar] [CrossRef]
- Heintze, C.; Bergner, F.; Akhmadaliev, S.; Altstadt, E. Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening. J. Nucl. Mater. 2016, 472, 196–205. [Google Scholar] [CrossRef]
- Ghosh, G.; Olson, G. The isotropic shear modulus of multicomponent Fe-base solid solutions. Acta Mater. 2002, 50, 2655–2675. [Google Scholar] [CrossRef]
- Stoller, R.; Zinkle, S. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J. Nucl. Mater. 2000, 283, 349–352. [Google Scholar] [CrossRef]
- Dolph, C.K.; da Silva, D.J.; Swenson, M.J.; Wharry, J.P. Plastic zone size for nanoindentation of irradiated Fe–9% Cr ODS. J. Nucl. Mater. 2016, 481, 33–45. [Google Scholar] [CrossRef]
- Johnson, K. The correlation of indentation experiments. J. Mech. Phys. Solids 1970, 18, 115–126. [Google Scholar] [CrossRef]
- Gao, X.-L.; Jing, X.; Subhash, G. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 2006, 43, 2193–2208. [Google Scholar] [CrossRef]
- Hein, H.; Gundermann, A.; Gillemot, F.; Serrano, M.; Hernandez, M.; Al-Mazouzi, A.; Todeschini, P.; Bergner, F.; Brumovsky, M.; Kytka, M.; et al. Deliverable D3.1 of Euratom project LONGLIFE, Documentation and data of materials for microstructural analysis, Grant Agreement No. 249360. 2012. [Google Scholar]
- Samuha, S.; Bickel, J.; Mukherjee, T.; DebRoy, T.; Lienert, T.; Maloy, S.; Lear, C.; Hosemann, P. Mechanical performance and microstructure of the grade 91 stainless steel produced via Directed Energy deposition laser technique. Mater. Des. 2023, 227, 111804. [Google Scholar] [CrossRef]
- Wagner, A.; Ulbricht, A.; Bergner, F.; Altstadt, E. Influence of the copper impurity level on the irradiation response of reactor pressure vessel steels investigated by SANS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 280, 98–102. [Google Scholar] [CrossRef]
- Queyreau, S.; Monnet, G.; Devincre, B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 2010, 58, 5586–5595. [Google Scholar] [CrossRef]
- Ebeling, R.; Ashby, M. Dispersion hardening of copper single crystals. Philos. Mag. 1966, 13, 805–834. [Google Scholar] [CrossRef]
- Hirsch, P.B.; Humphreys, F. The deformation of single crystals of copper and copper-zinc alloys containing alumina particles-I. Macroscopic properties and workhardening theory. Proc. R. Soc. Lond. A Math. Phys. Sci. 1970, 318, 45–72. [Google Scholar] [CrossRef]
- Bacon, D.; Kocks, U.; Scattergood, R. The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 1973, 28, 1241–1263. [Google Scholar] [CrossRef]
- Friedel, J. Dislocations: International Series of Monographs on Solid State Physics; Addison-Wesley: Reading, MA, USA, 1964; Volume 3. [Google Scholar]
- Durst, K.; Backes, B.; Göken, M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 2005, 52, 1093–1097. [Google Scholar] [CrossRef]
- Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; De Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9% Cr and Fe-14% Cr extruded bars. J. Nucl. Mater. 2017, 495, 6–19. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, F.; Hwang, K.; Nix, W.; Pharr, G.; Feng, G. A model of size effects in nano-indentation. J. Mech. Phys. Solids 2006, 54, 1668–1686. [Google Scholar] [CrossRef]
- Ruiz-Moreno, A.; Hähner, P. Indentation size effects of ferritic/martensitic steels: A comparative experimental and modelling study. Mater. Des. 2018, 145, 168–180. [Google Scholar] [CrossRef]
Material | C | Mn | Si | Cr | Ni | Mo | V | P | Cu |
---|---|---|---|---|---|---|---|---|---|
ANP-6 | 0.05 | 1.41 | 0.15 | 0.07 | 1.69 | 0.46 | 0.004 | 0.012 | 0.08 |
ANP-10 | 0.18 | 0.81 | 0.15 | 0.40 | 0.96 | 0.53 | <0.01 | 0.006 | 0.09 |
Ion Energy (MeV) | Flux (cm−2/s) | Fluence (cm−2) | Irradiation Time (h) | Temperature (°C) | Dose at Depth of 0.5 µm (dpa) |
---|---|---|---|---|---|
5 | 1.25 × 1011 | 2.67 × 1014 | 0.6 | 300 | 0.1 |
5 | 1.25 × 1011 | 2.67 × 1015 | 6 | 300 | 1 |
Properties | ANP-6 | ANP-10 |
---|---|---|
Grain size (µm) | 2.9 | 5.5 |
Dislocation density (m−2) | 3.2 × 1014 | 5.2 × 1013 |
Mean size of carbides (nm) | 65 | 67 |
Number density of carbides (m−3) | 8.6 × 1019 | 2.9 × 1020 |
ANP-6 | 0.1 dpa | 1 dpa | ||||
---|---|---|---|---|---|---|
Depth (nm) | 400–500 | 800–900 | 1150–1250 | 400–500 | 800–900 | 1150–1250 |
Size (nm) | 2.9 | 2.7 | 2.8 | 4.0 | 3.5 | 4.4 |
Number Density (×1022 m−3) | 7.2 | 10.4 | 9.8 | 16.1 | 28 | 31 |
ANP-10 | 0.1 dpa | 1 dpa | ||||
---|---|---|---|---|---|---|
Depth (nm) | 400–500 | 800–900 | 1150–1250 | 400–500 | 800–900 | 1150–1250 |
Size (nm) | 3 | 2.7 | - | 3.1 | 3.7 | 3 |
Number Density (×1022 m−3) | 2.2 | 2.55 | - | 16 | 27.4 | 41 |
Material | (MPa) [33] | c | (Equation (10)) | (Equation (11)) |
---|---|---|---|---|
ANP-6 | 555 | 8.9 | 3.0 | 4.5 |
ANP-10 | 422 | 9.7 | 3.2 | (4.5) * |
Material | 0.1 dpa | 1 dpa |
---|---|---|
ANP-6 | 0.142 | 0.175 |
ANP-10 | 0.135 | 0.157 |
ANP-6, 0.1 dpa | ANP-6, 1 dpa | ANP-10, 0.1 dpa | ANP-10, 1 dpa | |
---|---|---|---|---|
c/ci | 1.04 | 1.06 | 1.02 | 1.07 |
1.11 | 1.18 | 1.07 | 1.23 |
Material/Irradiation | ) (GPa) | |
---|---|---|
ANP-6, 0.1 dpa | 0.070 | 24% |
ANP-6, 1 dpa | 0.241 | 21% |
ANP-10, 0.1 dpa | 0.066 | 45% |
ANP-10, 1 dpa | 0.247 | 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, L.; Brandenburg, J.-E.; Chekhonin, P.; Duplessi, A.; Cuvilly, F.; Etienne, A.; Radiguet, B.; Rafaja, D.; Bergner, F. Microstructure-Informed Prediction of Hardening in Ion-Irradiated Reactor Pressure Vessel Steels. Metals 2024, 14, 257. https://doi.org/10.3390/met14030257
Lai L, Brandenburg J-E, Chekhonin P, Duplessi A, Cuvilly F, Etienne A, Radiguet B, Rafaja D, Bergner F. Microstructure-Informed Prediction of Hardening in Ion-Irradiated Reactor Pressure Vessel Steels. Metals. 2024; 14(3):257. https://doi.org/10.3390/met14030257
Chicago/Turabian StyleLai, Libang, Jann-Erik Brandenburg, Paul Chekhonin, Arnaud Duplessi, Fabien Cuvilly, Auriane Etienne, Bertrand Radiguet, David Rafaja, and Frank Bergner. 2024. "Microstructure-Informed Prediction of Hardening in Ion-Irradiated Reactor Pressure Vessel Steels" Metals 14, no. 3: 257. https://doi.org/10.3390/met14030257
APA StyleLai, L., Brandenburg, J. -E., Chekhonin, P., Duplessi, A., Cuvilly, F., Etienne, A., Radiguet, B., Rafaja, D., & Bergner, F. (2024). Microstructure-Informed Prediction of Hardening in Ion-Irradiated Reactor Pressure Vessel Steels. Metals, 14(3), 257. https://doi.org/10.3390/met14030257