A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms
Abstract
:1. Current Copper Materials and Development Trends of New Copper Alloys for Sliding Applications
2. Materials and Methods of Investigation
3. Results and Discussion of the Strengthening Mechanisms of CuAl8Fe5Ni4Zn4Sn1
3.1. Initial Condition after Continuous Casting
- CuAl8Fe5Ni4Zn4Sn1 is a polymorph alloy with a β-phase during solidification, which transforms into the α- and κ-phases during cooling to room temperature [35]. In such an alloy, the solid–solid phase transformation during cooling after solidification has an additional impact on grain refinement. This is because a plurality of daughter grains can result from each mother grain. The same behaviour can be observed in other polymorph copper alloys such as α/β brass [26].
- The iron content further contributes to the refinement of the microstructures. This effect is related to the iron, which is in solid solution in the copper matrix, as this proportion supports nucleation [36].
- The aforementioned aspects count for other bronze alloys such as CuAl10Ni5Fe4 as well. Notwithstanding that, as-cast CuAl10Ni5Fe4 also provides fine grains but a dendritic grain morphology. In comparison, CuAl8Fe5Ni4Zn4Sn1 does not only provide fine but also globular microstructures. Therefore, further differences in the chemical compositions must be the reason for the globular microstructures of CuAl8Fe5Ni4Zn4Sn1.
- Most likely, the globular microstructures of CuAl8Fe5Ni4Zn4Sn1 can be explained by the effect of tin, which is reported to shift the grain morphology of aluminium bronze to globulitic. This is due to the decline in nucleation temperatures, the reduction in undercooling intensity and the decrease in cooling rate during solidification [37].
3.2. Hot Extrusion of Rods and Tubes
3.3. Effect of Cold Drawing and Straightening of the Extruded Tubes
3.4. Thermal Treatment after the Cold Drawing of CuAl8Fe5Ni4Zn4Sn1
- Shear deformation in the near-surface zones of the tube material occurs because of the friction between the tool surface and the tube material;
- Furthermore, being surrounded by the neighbouring material in all directions results in a triaxial stress state of the core, but the stress state near the tube surface is nearly plane;
- Both the aforementioned friction and adiabatic heating lead to increasing temperatures in the tube material. Therefore, the temperature distribution in the tube cross-section is also inhomogeneous.
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arens, J.; Bungardt, W.; Mann, H.; Martin, E.; Meboldt, W.; Meysenbug, C.M.; Thum, A.; Weber, R.; Wiemer, H.; Kühnel, R. Werkstoffe für Gleitlager; Springer-Verlag OHG: Berlin/Göttingen/Heidelberg, Germany, 1952; pp. 233–318. [Google Scholar]
- Welsh, R.J. Plain Bearing Design Handbook; Butterworths University of California: Los Angeles, CA, USA, 1983. [Google Scholar]
- Koring, R. Changes in Plain Bearing Technology; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Deutsches Kupferinstitut. Kupfer-Zink-Legierungen (Messing und Sondermessing). Available online: https://kupfer.de/wp-content/uploads/2019/09/i5.pdf (accessed on 8 March 2024).
- Dinesh, D.; Megalingam, A. Dry Sliding Friction and Wear Behaviour of Leaded Tin bronze for Bearing and Bushing Application. Arch. Metall. Mater. 2021, 66, 1095–1104. [Google Scholar] [CrossRef]
- Bartz, W.J. Selbstschmierende und wartungsfreie Gleitlager. Typen, Eigenschaften, Einsatzgrenzen und Anwendungen; Expert-Verlag: Tübingen, Germany, 1993. [Google Scholar]
- Jose, J.P.; Thomas, S.; Kuruvilla, J.; Malhotra, S.K.; Goda, K.; Sreekala, M.S. Advances in polymer composites: Macro- and microcomposites—State of the art, new challenges, and opportunities. In Polymer Composites; Wiley: Weinheim, Germany, 2012; Volume 1, pp. 3–16. [Google Scholar]
- Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0095:en:PDF (accessed on 7 June 2024).
- Available online: https://echa.europa.eu/documents/10162/61ac8d81-6ea2-6ad0-ffef-95037c9182ce (accessed on 11 March 2024).
- Reetz, B.; Münch, T. Challenges for novel lead-free alloys in hydraulics. In Proceedings of the 12th International Fluid Power Conference, Dresden, Germany, 12–14 October 2020; Available online: https://tud.qucosa.de/api/qucosa%3A71055/attachment/ATT-0/ (accessed on 11 March 2024).
- OTTO FUCHS Dülken, 2022, internal metallographic investigation, more information available from OTTO FUCHS Dülken on request only.
- Stainless, Technical Data Sheet. Available online: https://www.stainless.eu/wp-content/uploads/2023/03/ToughMet3-ALL.pdf (accessed on 13 May 2023).
- Schmitz Metallographie GmbH. Available online: https://www.schmitz-metallographie.de/gefuge/cw453k-cusn8-2/ (accessed on 23 May 2024).
- Gummert, H.; Reetz, B. Anwendungsoptimierte Kupfer-Knetlegierungen für Gleit-und Wälzlager. Metall 2015, 11, 463–467. Available online: https://kupfer.de/wp-content/uploads/2019/11/463-FA-Reetz.pdf (accessed on 13 May 2024).
- Dies, K. Kupfer und Kupferlegierungen in der Technik; Springer: Berlin/Göttingen/Heidelberg, Germany, 1967. [Google Scholar]
- Shalunov, E.; Shalunov, S.; Vladimirova, Y. Analysis of Operating Conditions of Heavy-Loaded and Heat-Stressed Friction Units of Powerful Internal Combustion Engines and Development of Copper Nanocomposite Powder Materials for Them. MATEC Web of Conferences 298 (2019). Available online: https://www.matec-conferences.org/articles/matecconf/pdf/2019/47/matecconf_icmtmte18_00101.pdf (accessed on 11 March 2024).
- Collini, L. Copper Alloys-Early Applications and Current Performance-Enhancing Processes; InTech, Croatia. 2012. Available online: http://www.issp.ac.ru/ebooks/books/open/Copper_Alloys_-_Early_Applications_and_Current_Performance_-_Enhancing_Processes.pdf (accessed on 11 March 2024).
- OTTO FUCHS Dülken, 2024, internal metallographic investigation, more information available from OTTO FUCHS Dülken on request only.
- Miracle, D.B. Critical Assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 2015, 31, 1142–1147. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. Available online: https://www.sciencedirect.com/science/article/pii/S1359645416306759 (accessed on 13 May 2024). [CrossRef]
- Wang, C.; Fu, H.; Jiang, L.; Xue, D.; Xie, J. A property-oriented design strategy for high performance copper alloys via machine learning. Comput. Mater. 2019, 5, 87. Available online: https://www.nature.com/articles/s41524-019-0227-7 (accessed on 13 May 2024). [CrossRef]
- Anamu, U.S.; Ayodele, O.O.; Olorundaisi, E.; Babalola, B.J.; Odetola, P.I.; Ogunmefun, A.; Ukoba, K.; Jen, T.-C.; Olubambi, P.A. Fundamental design strategies for advancing the development of high entropy alloys for thermo-mechanical application: A critical review. J. Mater. Res. Technol. 2023, 27, 4833–4860. [Google Scholar] [CrossRef]
- OTTO FUCHS Dülken Material Data Sheets: Alloy OF 2228, available from OTTO FUCHS Dülken on request.
- Jitchoom, S.; Rojananan, S.; Rojananan, S. Influence of Aluminium on the Color, Microstructure and Hardness of White Alloys. Adv. Mater. Res. 2013, 802, 159–163. [Google Scholar] [CrossRef]
- Kumar, D. Recent advances in tribology of high entropy alloys: A critical review. Prog. Mater. Sci. 2023, 136, 101106. [Google Scholar] [CrossRef]
- Reetz, B. Mikrostruktur und Eigenschaften stranggepresster sowie kaltverformter Messinglegierungen. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2006. [Google Scholar]
- Paulus, A. Tribolayer Formation on Bronze CuSn12Ni2 in the Tribological Contact between Cylinder and Control Plate in an Axial Piston Pump with Swashplate Design. In Proceedings of the International Fluid Power Conference 2016, Dresden, Germany, 8–10 March 2016. [Google Scholar]
- Assenova, E.; Kandeva, M. Self-organization and Selective Transfer in Tribology. In Proceedings of the 8th International Conference on Tribology (BALKANTRIB’14), Sinaia, Romania, 30 October–1 November 2014. [Google Scholar]
- Reetz, B.; Münch, T. Neue bleifreie Aluminiumbronze für Pleuellager-Anwendungspotential von komplexen Mehrstoffbronzen. Metall 2020, 11, 431–436. [Google Scholar]
- OTTO FUCHS Dülken Material Data Sheets: Alloy OF 2238, available from OTTO FUCHS Dülken on request.
- DIN ISO 6892-1:2020-06; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature (ISO 6892-1:2019). ISO: Geneva, Switzerland, 2019.
- Taslicukur, Z.; Altug, G.S.; Polat, S.; Atapek, S.H.; Türedi, E. A Microstructural Study on CuSn10 Bronze Produced by and and Investment Casting Techniques. Conference Paper. 2012. Available online: https://www.researchgate.net/publication/267602750_A_microstructural_study_on_CuSn10_bronze_produced_by_sand_and_investment_casting_techniques (accessed on 15 May 2024).
- Anantapong, J.; Uthaisangsuk, V.; Suranuntchai, S.; Manonukul, A. Effect of hot working on microstructure evolution of as-cast Nickel Aluminum Bronze alloy. Mater. Des. 2014, 60, 233–243. [Google Scholar] [CrossRef]
- Böhm, J.; Linhardt, P.; Strobl, S.; Haubner, R.; Biezma, M.V. Microstructure of a heat treated Nickel-Aluminum Bronze and its corrosion behavior in simulated fresh and sea water. Mater. Perform. Charact. 2016, 5, 689–700. Available online: https://www.researchgate.net/publication/308044348_Microstructure_of_a_Heat_Treated_Nickel-Aluminum_Bronze_and_Its_Corrosion_Behavior_in_Simulated_Fresh_and_Sea_Water/link/5f5a1cd7299bf1d43cf94f4f/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19 (accessed on 15 May 2024). [CrossRef]
- Meigh, H. Cast and Wrought Aluminium Bronzes: Properties, Processes and Structure; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Soares, D.; Vilarinho, C.; Silva, R.; Vasques, A.; Castro, F. Influence of the Iron Content on the Solidification Behaviour of Cast Aluminium Bronze Used in Marine Applications. Inter-national Congress on Advanced Materials, Their Processes and Applications, Munique. Available online: https://repositorium.sdum.uminho.pt/bitstream/1822/2190/1/Munique%202001.pdf (accessed on 11 March 2024).
- Sushanth Poojary, S.; Marakini, V.; Rao, R.N.; Vijayan, V. Enhancing microstructure and mechanical properties of nickel aluminium bronze alloy through tin addition. Sci. Rep. 2023, 13, 16907. [Google Scholar] [CrossRef] [PubMed]
- Bauser, M. Strangpressen; Beuth Verlag GmbH: Berlin, Germany, 2011. [Google Scholar]
- Hall, E.O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Gottstein, G. Physikalische Grundlagen der Materialkunde; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Li, Y.; Bushby, A.J.; Dunstan, D.J. The Hall-Petch Effect as a Manifestation of the General Size Effect. Available online: https://arxiv.org/pdf/1507.01223 (accessed on 15 May 2024).
- Gummert, H.-J. Drawing: The Production of Wires, Bars and Tubes; Text Team Medien und Druck: Detmold, Germany, 2006. [Google Scholar]
- Vollert, F.; Lüchinger, M.; Schuster, S.; Simon, N.; Gibmeier, J.; Kern, K.; Schreiner, M.; Tillmann, W. Experimental and numerical analyses of residual stresses induced by tube drawing. J. Strain Anal. Eng. Des. 2018, 53, 364–375. [Google Scholar] [CrossRef]
- Palkowski, H.; Brück, S.; Pirling, T.; Carradò, A. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis. Materials 2013, 6, 5118–5130. [Google Scholar] [CrossRef] [PubMed]
Cu | Zn | Pb | Sn | Fe | Mn | Ni | Al | |
---|---|---|---|---|---|---|---|---|
Min | balance | 3.0 | - | 0.5 | 3.5 | - | 3.0 | 7.0 |
Max | - | 5.0 | 0.1 | 2.0 | 5.5 | 0.5 | 5.0 | 9.0 |
Mechanical Property | Unit | Requirement * |
---|---|---|
0.2%-Yield strength | MPa | Minimum 500 |
Tensile strength | MPa | Minimum 700 |
Elongation at fracture | % | Minimum 5 |
Hardness Brinell | HBW | 210 |
Bending fatigue strength | MPa | ~220 to 230 |
Cu | Zn | Sn | Fe | Ni | Al | |
---|---|---|---|---|---|---|
Matrix | 74 | 4 | 1 | 3 | 3 | 15 |
Coarse particles (centre) | 16 | 0 | 0 | 50 | 14 | 20 |
Coarse particles (outer edge) | 32 | 0 | 0 | 14 | 22 | 32 |
Coarse precipitations (Fe-rich) | 13 | 0 | 0 | 47 | 14 | 26 |
Coarse precipitations (Ni-rich) | 50 | 3 | 0 | 19 | 22 | 6 |
Fine precipitations (Fe-rich) | 67 | 0 | 0 | 23 | 10 | 0 |
Fine precipitations (Ni-rich) | 83 | 5 | 0 | 3 | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reetz, B.; Münch, T. A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms. Metals 2024, 14, 697. https://doi.org/10.3390/met14060697
Reetz B, Münch T. A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms. Metals. 2024; 14(6):697. https://doi.org/10.3390/met14060697
Chicago/Turabian StyleReetz, Björn, and Tileman Münch. 2024. "A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms" Metals 14, no. 6: 697. https://doi.org/10.3390/met14060697
APA StyleReetz, B., & Münch, T. (2024). A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms. Metals, 14(6), 697. https://doi.org/10.3390/met14060697