Advanced Performance of Copper Alloys

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 1172

Special Issue Editor

Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Interests: powder metallurgy; metal matrix composites; copper alloy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Copper alloys have a series of excellent properties, such as high electrical conductivity, thermal conductivity, strength, and corrosion resistance, and are also easy to process. However, existing copper alloys and their related materials have not been able to keep up with the rapid development of high-tech industries such as electronic and electrical engineering, mobile communications, new energy vehicles, aerospace, and rail transportation. Therefore, it is important to develop new copper alloys with more advanced properties. The purpose of this Special Issue is to unite researchers in the field of copper alloys with the latest original research results and provide a reference for future studies on high-performance copper alloys.

Dr. Qian Lei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • high-strength copper alloy
  • wear- and corrosion-resistant copper alloy
  • ultra-high-strength elastic copper alloy
  • advanced copper matrix composites
  • advanced copper alloy processing technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 11395 KiB  
Article
A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms
by Björn Reetz and Tileman Münch
Metals 2024, 14(6), 697; https://doi.org/10.3390/met14060697 - 12 Jun 2024
Viewed by 923
Abstract
CuAl8Fe5Ni4Zn4Sn1 (OF 2238) is a new lead-free copper alloy for plain-bearing applications that was first officially presented in a scientific journal in 2020. Soon after its invention, the use of the alloy for connecting rod bushings in heavy-duty internal combustion engines was promoted [...] Read more.
CuAl8Fe5Ni4Zn4Sn1 (OF 2238) is a new lead-free copper alloy for plain-bearing applications that was first officially presented in a scientific journal in 2020. Soon after its invention, the use of the alloy for connecting rod bushings in heavy-duty internal combustion engines was promoted and validated with customers. The aim of this article is to describe the material properties of the new alloy in more detail than previously and explain how the advantageous properties of CuAl8Fe5Ni4Zn4Sn1 are generated. At the beginning of this article, the general development trends in the field of copper alloys for sliding applications are presented, into which the new alloy from this publication can be classified. In the main part of this publication, the authors go through the production chain of CuAl8Fe5Ni4Zn4Sn and show how the entire manufacturing process contributes to obtaining a material with a combination of high strength, ductility and sufficient toughness. This starts with fine microstructures after casting, followed by homogenisation and refinement during hot extrusion and work hardening chiefly during cold drawing. What is most surprising, however, is the finding that a strong hardening effect can be achieved in the new alloy by precipitation of fine κ-phase at temperatures of about 400 °C and air cooling without prior solution treatment. These results make it clear that there is great potential for further material developments to support material efficiency and even to expand the application limits. Full article
(This article belongs to the Special Issue Advanced Performance of Copper Alloys)
Show Figures

Figure 1

Back to TopTop