Effect of Calefaction and Stress Relaxation on Grain Boundaries/Textures of Cu–Cr–Ni Alloy
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Properties and Microstructure
3.2. Effect of Calefaction and Stress Relaxation on Grain Boundaries
3.3. Effect of Calefaction and Stress Relaxation on Fiber Texture
3.4. Effect of Calefaction and Stress Relaxation on Plate Texture
4. Conclusions
- The effect of stress relaxation on the GBs is opposite to that of the calefaction. Calefaction can reduce the proportion of LAGBs, leading to a decrease in stress relaxation resistance, which is related to the dislocation motion.
- The Cu–Cr–Ni alloy forms a preferred <111>-orientated texture after cold rolling. However, the preferred orientation tilts toward the <113> direction due to the calefaction, while shifting toward the <111> and <100> directions after stress relaxation.
- The Cu–Cr–Ni alloy is composed of Brass, S, and Copper textures regardless of the state. After calefaction or stress relaxation, the texture type does not change but the proportion varies. The SF transforms from hard to soft orientation under calefaction, and from soft to hard orientation when subjected to stress relaxation.
- The reduction in SF after the stress relaxation is consistent with the stretching results, indicating that stress relaxation is a transformation process that transitions from elastic to plastic deformation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, M.; Helm, D. Prediction of the behaviour of copper alloy components under complex loadings by electro-thermomechanical coupled simulations. Mater. Sci. Technol. 2018, 36, 899–905. [Google Scholar] [CrossRef]
- Liao, K.C.; Chang, C.C. Relaxation investigation on durability for terminals of CPU socket connectors. Mater. Des. 2009, 30, 252–255. [Google Scholar] [CrossRef]
- Sharififar, M.; Akbari Mousavi, S.A.A. Tensile deformation and fracture behavior of CuZn5 brass alloy at high temperature. Mater. Sci. Eng. A 2014, 594, 118–124. [Google Scholar] [CrossRef]
- Chen, K.J. Novel application research on critical high-temperature deformation of low-lead brass alloy. Metals 2020, 10, 722. [Google Scholar] [CrossRef]
- Yang, X.S.; Wang, Y.J.; Wang, G.Y.; Zhai, H.R.; Dai, L.H.; Zhang, T.Y. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations. Acta Mater. 2016, 108, 252–263. [Google Scholar] [CrossRef]
- Lyu, F.; Li, Y.; Shi, Z.S.; Huang, X.; Zeng, Y.S.; Lin, J.G. Stress and temperature dependence of stress relaxation ageing behaviour of an Al-Zn-Mg alloy. Mater. Sci. Eng. A 2020, 773, 138859. [Google Scholar] [CrossRef]
- Peng, H.L.; Hou, Z.Q.; Chen, X.; Li, T.L.; Luo, J.F.; Li, X.F. Effect of temperature and cyclic loading on stress relaxation behavior of Ti-6Al-4V titanium alloy. Mater. Sci. Eng. A 2021, 824, 141789. [Google Scholar] [CrossRef]
- Siska, F.; Stratil, L.; Smid, M.; Luptakova, N.; Zalezak, T.; Bartkova, D. Deformation and fracture behavior of the P91 martensitic steel at high temperatures. Mater. Sci. Eng. A 2016, 672, 1–6. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Peng, L.J.; Huang, G.J.; Feng, X.; Xie, H.F.; Mi, X.J.; Liu, X.H. Effect of Mg on the stress relaxation resistance of Cu–Cr alloys. Mater. Sci. Eng. A 2021, 799, 140144. [Google Scholar] [CrossRef]
- Shah, N.S.; Sunil, S.; Sarkar, A. High temperature uniaxial compression and stress–relaxation behavior of india-specific RAFM Steel. Metall. Mater. Trans. A 2018, 49, 2644–2653. [Google Scholar] [CrossRef]
- Cheng, C.; Feng, Y.; Chen, Z.Y.; Li, H.E.; Wang, X.; Wang, Q.J. Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet. Mater. Sci. Eng. A 2021, 826, 141971. [Google Scholar] [CrossRef]
- Ji, Y.T.; Suo, H.L.; Liu, J.; Ma, L.; Liu, M.; Shaheen, K.; Wang, Y.; Zhang, Z.L.; Wang, Q.L. Effect of stress-relief annealing on rolled texture of nickel-based alloys. J. Alloys Compd. 2022, 903, 163970. [Google Scholar] [CrossRef]
- Ban, Y.J.; Zhang, Y.; Jia, Y.L.; Tian, B.H.; Volinsky, A.A.; Zhang, X.H.; Zhang, Q.F.; Geng, Y.F.; Liu, Y.; Li, X. Effects of Cr addition on the constitutive equation and precipitated phases of copper alloy during hot deformation. Mater. Des. 2020, 191, 108613. [Google Scholar] [CrossRef]
- Shen, F.H.; Zhou, Z.R.; Li, W.F.; Sun, Z.Z.; Tian, J.; Xie, C.X.; Guo, J.W.; Liao, Z.L.; Yi, D.Q.; Zhang, J.Y.; et al. Micro-mechanism of texture evolution during isochronal annealing of as-annealed hot rolled Al-Cu-Mg sheet. Mater. Des. 2019, 165, 107575. [Google Scholar] [CrossRef]
- Gao, X.; Wu, H.B.; Liu, M.; Zhang, Y.X.; Gao, F.; Zhou, X.D. Texture and special grain boundary distribution of C71500 copper-nickel alloy tubes at different annealing temperatures. J. Mater. Eng. Perform. 2021, 30, 2365–2373. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Sun, J.H.; Zhou, L.Y.; Tu, Y.G.; Xing, F.; Guo, Y.C.; Tong, Q. Experiment investigation of deep-drawing sheet texture evolution. J. Mater. Process. Technol. 2003, 140, 509–513. [Google Scholar] [CrossRef]
- Chen, W.; Chen, M.H.; Feng, S.H.; Jin, X.J. Effect of crystallographic texture on the anisotropic tensile behavior of aluminum foil and its industrial application. J. Mater. Eng. Perform. 2021, 31, 1306–1316. [Google Scholar] [CrossRef]
- Yang, F.; Dong, L.M.; Cai, L.; Wang, L.F.; Xie, Z.H.; Fang, F. Effect of cold drawing strain on the microstructure, mechanical properties and electrical conductivity of low-oxygen copper wires. Mater. Sci. Eng. A 2021, 818, 141348. [Google Scholar] [CrossRef]
- Aghamiri, S.M.S.; Oono, N.; Ukai, S.; Kasada, R.; Noto, H.; Hishinuma, Y.; Muroga, T. Brass-texture induced grain structure evolution in room temperature rolled ODS copper. Mater. Sci. Eng. A 2019, 749, 118–128. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Y.L.; Zhao, Y.N.; Yu, W.; Su, L.; Tang, D. Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu-Ni-Si-Co alloy. Mater. Sci. Eng. A 2021, 814, 141239. [Google Scholar] [CrossRef]
- Wang, C.S.; Fu, H.D.; Xie, J.X. Dynamic recrystallization behavior and microstructure evolution of high-performance Cu-3.28Ni-0.6Si-0.22Zn-0.11Cr-0.04P during hot compression. Rare Met. 2021, 40, 156–167. [Google Scholar] [CrossRef]
- Geng, Y.F.; Ban, Y.J.; Li, X.; Zhang, Y.; Jia, Y.L.; Tian, B.H.; Zhou, M.; Liu, Y.; Volinsky, A.A.; Song, K.X.; et al. Excellent mechanical properties and high electrical conductivity of Cu-Co-Si-Ti alloy due to multiple strengthening. Mater. Sci. Eng. A 2021, 821, 141639. [Google Scholar] [CrossRef]
- Liu, W.J.; Chen, X.; Ahmad, T.; Zhou, C.Y.; Xiao, X.P.; Wang, H.; Yang, B. Microstructures and mechanical properties of Cu-Ti alloys with ultrahigh strength and high ductility by thermo-mechanical treatment. Mater. Sci. Eng. A 2022, 835, 142672. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Tang, M.X.; E, J.C.; Zhong, Z.Y.; Luo, S.N. Texture evolution of Cu nanopowder under uniaxial compression. Materialia 2018, 1, 236–243. [Google Scholar] [CrossRef]
- Yang, J.Z.; Bu, K.; Song, K.X.; Zhou, Y.J.; Huang, T.; Niu, L.Y.; Guo, H.W.; Du, Y.B.; Kang, J.W. Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu-Cr-Ti-Si alloy strips. Mater. Sci. Eng. A 2020, 798, 140120. [Google Scholar] [CrossRef]
- Watanabe, C.; Monzen, R.; Tazaki, K. Mechanical properties of Cu-Cr system alloys with and without Zr and Ag. J. Mater. Sci. 2008, 43, 813–819. [Google Scholar] [CrossRef]
- Li, P.F.; Zou, M.Q.; Song, C.Y.; Qi, L.; Guan, R.G. Research on the stress relaxation behaviour of Cu-0.23Cr-0.08Ag alloy. Mater. Sci. Technol. 2021, 37, 458–466. [Google Scholar] [CrossRef]
- Buchhagen, P.; Riehemann, W. Stress relaxation in precipitation-hardenable alloys. J. Alloys Compd. 1994, 211–212, 509–513. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhan, L.H.; Liu, C.H.; Wang, X.; Wang, Q.; Tang, Z.M.; Tang, Z.M.; Li, G.P.; Huang, M.H.; Hu, Z.G. Stress-relaxation ageing behavior and microstructural evolution under varying initial stresses in an Al-Cu alloy: Experiments and modeling. Int. J. Plast. 2020, 127, 102646. [Google Scholar] [CrossRef]
- Wang, G.J.; Liu, H.T.; Song, K.X.; Zhou, Y.J.; Cheng, C.; Guo, H.W.; Guo, Y.G.; Tian, J. Aging process and strengthening mechanism of Cu–Cr–Ni alloy with superior stress relaxation resistance. J Mater. Res. Technol. 2022, 19, 3579–3591. [Google Scholar] [CrossRef]
- GB/T 34505-2017; Copper and Copper Alloy Materials—Tensile Testing at Room Temperature. National Standards of the People’s Republic of China: Beijing, China, 2017.
- Geng, Y.F.; Li, X.; Zhou, H.L.; Zhang, Y.; Jia, Y.L.; Tian, B.H.; Liu, Y.; Volinsky, A.A.; Zhang, X.H.; Song, K.X.; et al. Effect of Ti addition on microstructure evolution and precipitation in Cu-Co-Si alloy during hot deformation. J. Alloys Compd. 2020, 821, 153518. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, H.; Sun, H.Y.; Chen, G. Effects of annealing temperature on the microstructure, textures and tensile properties of cold-rolled Fe-13Cr-4Al alloys with different Nb contents. Mater. Sci. Eng. A 2020, 798, 140236. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, H.; Yao, S.J.; Wang, C.J.; Zhu, Q.; Chen, G. Effect of annealing on the microstructure, texture and tensile deformation properties of Cu-3 wt%Ag-0.5 wt%Zr thin sheets rolled at room and cryogenic temperature. Met. Mater. Int. 2021, 27, 392–402. [Google Scholar] [CrossRef]
- Tong, L.B.; Zhang, J.B.; Zhang, Q.X.; Jiang, Z.H.; Xu, C.; Kamado, S.; Zhang, D.P.; Meng, J.; Cheng, L.R.; Zhang, H.J. Effect of warm rolling on the microstructure, texture and mechanical properties of extruded Mg-Zn-Ca-Ce/La alloy. Mater. Charact. 2016, 115, 1–7. [Google Scholar] [CrossRef]
- Dasharath, S.M.; Mula, S. Microstructural evolution and mechanical properties of low SFE Cu-Al alloys processed by cryorolling followed by short-annealing. Mater. Des. 2016, 99, 552–564. [Google Scholar] [CrossRef]
- Xiao, X.P.; Xu, H.; Huang, J.; Wang, J.F.; Zhang, J.B. Stress relaxation properties and microscopic deformation structure in bending of the C7025 and C7035 alloy. Crystals 2018, 8, 324. [Google Scholar] [CrossRef]
- Kumar, S. Evaluation of strain hardening during uniaxial tensile loading followed by stress relaxation and reloading. Metall. Mater. Trans. A 2022, 53, 1336–1344. [Google Scholar] [CrossRef]
- Ifergane, S.; Barkay, Z.; Beeri, O.; Eliaz, N. Study of fracture evolution in copper sheets by in situ tensile test and EBSD analysis. J. Mater. Sci. 2010, 45, 6345–6352. [Google Scholar] [CrossRef]
- Youngdahl, C.J.; Weertman, J.R.; Hugo, R.C.; Kung, H.H. Deformation behavior in nanocrystalline copper. Scripta Mater. 2001, 44, 1475–1478. [Google Scholar] [CrossRef]
- Liu, S.C.; Gao, Y.; Lin, Z.L.; Guo, S.S.; Zhang, X.B.; Yin, X.J. Microstructure and properties after deformation and aging process of A286 superalloy. Rare Met. 2019, 38, 864–870. [Google Scholar] [CrossRef]
- Ripoll, M.R.; Očenášek, J. Microstructure and texture evolution during the drawing of tungsten wires. Eng. Fract. Mech. 2009, 76, 1485–1499. [Google Scholar] [CrossRef]
- Popova, E.N.; Popov, V.V.; Romanov, E.P.; Hlebova, N.E.; Shikov, A.K. Effect of deformation and annealing on texture parameters of composite Cu-Nb wire. Scripta Mater. 2004, 51, 727–731. [Google Scholar] [CrossRef]
- Narayanan, K.R.; Sridhar, I.; Subbiah, S. Experimental and numerical investigations of the texture evolution in copper wire drawing. Appl. Phys. A 2012, 107, 485–495. [Google Scholar] [CrossRef]
- Zhang, W.J.; Lu, J.X.; Wang, J.; Sang, L.J.; Ma, J.Y.; Zhang, Y.F.; Zhang, Z. In-situ EBSD study of deformation behavior of Inconel 740H alloy at high-temperature tensile loading. J. Alloys Compd. 2020, 820, 153424. [Google Scholar] [CrossRef]
Alloy | Cr | Ni | Ti | Fe | Si | Zr | Cu |
---|---|---|---|---|---|---|---|
Cu-Cr-Ni | 0.27 | 0.19 | 0.058 | 0.034 | 0.028 | 0.0036 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, G.; Song, K.; Hua, Y.; Liu, Y.; Huang, T. Effect of Calefaction and Stress Relaxation on Grain Boundaries/Textures of Cu–Cr–Ni Alloy. Metals 2024, 14, 837. https://doi.org/10.3390/met14070837
Liu H, Wang G, Song K, Hua Y, Liu Y, Huang T. Effect of Calefaction and Stress Relaxation on Grain Boundaries/Textures of Cu–Cr–Ni Alloy. Metals. 2024; 14(7):837. https://doi.org/10.3390/met14070837
Chicago/Turabian StyleLiu, Haitao, Guojie Wang, Kexing Song, Yunxiao Hua, Yong Liu, and Tao Huang. 2024. "Effect of Calefaction and Stress Relaxation on Grain Boundaries/Textures of Cu–Cr–Ni Alloy" Metals 14, no. 7: 837. https://doi.org/10.3390/met14070837
APA StyleLiu, H., Wang, G., Song, K., Hua, Y., Liu, Y., & Huang, T. (2024). Effect of Calefaction and Stress Relaxation on Grain Boundaries/Textures of Cu–Cr–Ni Alloy. Metals, 14(7), 837. https://doi.org/10.3390/met14070837