The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review
Abstract
:1. Introduction
2. Overview of Metal 3D Printing
2.1. Metal Powders Used in 3D Printing
2.2. Powder Production Methods
3. Powder Degradation Mechanisms
3.1. Thermal Effects
3.2. Mechanical Effects
3.3. Chemical Effects
3.4. Impact on Powder Properties
4. Effect of Recycled Powders on 3D-Printed Components
5. Powder Reuse Strategies
6. Advances in Powder Recycling Techniques
6.1. Mechanical Recycling Methods
6.2. Thermal Recycling Methods
6.3. Chemical Recycling Methods
6.4. Emerging Technologies and Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Savvides, L.A. History of 3D Printing: Three Waves of Development. In 3D Printing Cultures, Politics and Hackerspaces; Emerald Publishing Limited: Leeds, UK, 2021; pp. 29–51. Available online: https://www.emerald.com/insight/content/doi/10.1108/978-1-80071-665-020211005/full/html (accessed on 31 May 2024).
- Kumar, S.P.; Elangovan, S.; Mohanraj, R.; Ramakrishna, J.R. Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes. Mater. Today Proc. 2021, 46, 7907–7920. [Google Scholar] [CrossRef]
- Kumar, S. Selective laser sintering: A qualitative and objective approach. JOM 2003, 55, 43–47. [Google Scholar] [CrossRef]
- Joshi, S.C.; Sheikh, A.A. 3D printing in aerospace and its long-term sustainability. Virtual Phys. Prototyp. 2015, 10, 175–185. [Google Scholar] [CrossRef]
- Lecklider, T. 3D printing drives automotive innovation. Eval. Eng. 2017, 56, 16–20. [Google Scholar]
- Aimar, A.; Palermo, A.; Innocenti, B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef] [PubMed]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, M.I.U. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Do, T.; Kwon, P.; Shin, C.S. Process development toward full-density stainless steel parts with binder jetting printing. Int. J. Mach. Tools Manuf. 2017, 121, 50–60. [Google Scholar] [CrossRef]
- Mao, Y.; Li, J.; Li, W.; Cai, D.; Wei, Q. Binder jetting additive manufacturing of 316L stainless-steel green parts with high strength and low binder content: Binder preparation and process optimization. J. Mater. Process. Technol. 2021, 291, 117020. [Google Scholar] [CrossRef]
- Wheat, E.; Vlasea, M.; Hinebaugh, J.; Metcalfe, C. Sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing. Mater. Des. 2018, 156, 167–183. [Google Scholar] [CrossRef]
- Im, S.; Ghasri-Khouzani, M.; Muhammad, W.; Batmaz, R.; Esmati, K.; Chakraborty, A.; Natarajan, A.; Martin, É. Evaluation of Different Sintering Agents for Binder Jetting of Aluminum Alloy. J. Mater. Eng. Perform. 2023, 32, 9550–9560. [Google Scholar] [CrossRef]
- Karlsson, D.; Lindwall, G.; Lundbäck, A.; Amnebrink, M.; Boström, M.; Riekehr, L.; Schuisky, M.; Sahlberg, M.; Jansson, U. Binder jetting of the AlCoCrFeNi alloy. Addit. Manuf. 2019, 27, 72–79. [Google Scholar] [CrossRef]
- Hong, D.; Chou, D.-T.; Velikokhatnyi, O.I.; Roy, A.; Lee, B.; Swink, I.; Issaev, I.; Kuhn, H.A.; Kumta, P.N. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016, 45, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, V.S.; Sachdeva, A. Progress in selective laser sintering using metallic powders: A review. Mater. Sci. Technol. 2016, 32, 760–772. [Google Scholar] [CrossRef]
- Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Kumar, M.B.; Sathiya, P.; Varatharajulu, M. Selective laser sintering. In Advances in Additive Manufacturing Processes; Natarajan, J., Cheepu, M., Yang, C.-H., Eds.; China Bentham Books: Beijing, China, 2021; p. 28. [Google Scholar]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Fe-Perdomo, I.L.; Ramos-Grez, J.A.; Beruvides, G.; Mujica, R.A. Selective laser melting: Lessons from medical devices industry and other applications. Rapid Prototyp. J. 2021, 27, 1801–1830. [Google Scholar] [CrossRef]
- Vasco, J.C. Additive manufacturing for the automotive industry. In Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 505–530. Available online: https://www.sciencedirect.com/science/article/pii/B9780128184110000100 (accessed on 31 May 2024).
- Chantzis, D.; Liu, X.; Politis, D.J.; El Fakir, O.; Chua, T.Y.; Shi, Z.; Wang, L. Review on additive manufacturing of tooling for hot stamping. Int. J. Adv. Manuf. Technol. 2020, 109, 87–107. [Google Scholar] [CrossRef]
- Wang, Z.; Ummethala, R.; Singh, N.; Tang, S.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G. Selective laser melting of aluminum and its alloys. Materials 2020, 13, 4564. [Google Scholar] [CrossRef] [PubMed]
- Rahulan, N.; Sharma, S.S.; Rakesh, N.; Sambhu, R. A short review on mechanical properties of SLM titanium alloys based on recent research works. Mater. Today Proc. 2022, 56, A7–A12. [Google Scholar] [CrossRef]
- Röttger, A.; Boes, J.; Theisen, W.; Thiele, M.; Esen, C.; Edelmann, A.; Hellmann, R. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 2020, 108, 769–783. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Feng, Z.; Chen, Y. Research progress on selective laser melting (SLM) of magnesium alloys: A review. Optik 2020, 207, 163842. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Waqar, S.; Kuntoğlu, M.; Krolczyk, G.M.; Maruda, R.W.; Pimenov, D.Y. A short review on thermal treatments of Titanium & Nickel based alloys processed by selective laser melting. J. Mater. Res. Technol. 2022, 16, 1090–1101. [Google Scholar]
- Hong, J.H.; Yeoh, F.Y. Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing. Mater. Today Proc. 2020, 29, 196–201. [Google Scholar] [CrossRef]
- Negi, S.; Nambolan, A.A.; Kapil, S.; Joshi, P.S.; Karunakaran, K.P.; Bhargava, P. Review on electron beam based additive manufacturing. Rapid Prototyp. J. 2020, 26, 485–498. [Google Scholar] [CrossRef]
- Monteiro, H.; Carmona-Aparicio, G.; Lei, I.; Despeisse, M. Energy and material efficiency strategies enabled by metal additive manufacturing—A review for the aeronautic and aerospace sectors. Energy Rep. 2022, 8, 298–305. [Google Scholar] [CrossRef]
- Marin, E.; Fusi, S.; Pressacco, M.; Paussa, L.; Fedrizzi, L. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium. J. Mech. Behav. Biomed. Mater. 2010, 3, 373–381. [Google Scholar] [CrossRef]
- Marin, E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater. Today Bio 2023, 23, 100777. [Google Scholar] [CrossRef]
- Marin, E.; Pressacco, M.; Fusi, S.; Lanzutti, A.; Turchet, S.; Fedrizzi, L. Characterization of grade 2 commercially pure Trabecular Titanium structures. Mater. Sci. Eng. C 2013, 33, 2648–2656. [Google Scholar] [CrossRef] [PubMed]
- Gaytan, S.M.; Murr, L.E.; Ramirez, D.A.; Machado, B.I.; Martinez, E.; Hernandez, D.H.; Martinez, J.L.; Medina, F.; Wicker, R.B. A TEM study of cobalt-base alloy prototypes fabricated by EBM. Mater. Sci. Appl. 2011, 2, 355. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Liu, Z.; He, B.; Lyu, T.; Zou, Y. A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V. JOM 2021, 73, 1804–1818. [Google Scholar] [CrossRef]
- Busachi, A.; Erkoyuncu, J.; Colegrove, P.; Martina, F.; Watts, C.; Drake, R. A review of Additive Manufacturing technology and Cost Estimation techniques for the defence sector. CIRP J. Manuf. Sci. Technol. 2017, 19, 117–128. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of directed energy deposition-based additive manufacturing in repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef]
- Saboori, A.; Gallo, D.; Biamino, S.; Fino, P.; Lombardi, M. An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties. Appl. Sci. 2017, 7, 883. [Google Scholar] [CrossRef]
- Smith, T.R.; Sugar, J.D.; San Marchi, C.; Schoenung, J.M. Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater. 2019, 164, 728–740. [Google Scholar] [CrossRef]
- Kumar, S.P.; Elangovan, S.; Mohanraj, R.; Ramakrishna, J.R. A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition. Mater. Today Proc. 2021, 46, 7892–7906. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chen, T.-C.T. Quality control issues in 3D-printing manufacturing: A review. Rapid Prototyp. J. 2018, 24, 607–614. [Google Scholar] [CrossRef]
- Chua, C.K.; Wong, C.H.; Yeong, W.Y. Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing; Academic Press: Cambridge, MA, USA, 2017; Available online: https://books.google.com/books?hl=en&lr=&id=PfTtDQAAQBAJ&oi=fnd&pg=PP1&dq=3D+printing+metals+powder+quality&ots=Kr8EN_Ff-P&sig=NtqLVrM_O3NMe91yxZUSFuNSDn4 (accessed on 31 May 2024).
- Lyckfeldt, O. Powder Characterisation: Powder rheology of steel powders for additive manufacturing. In Proceedings of the European Congress and Exhibition on Powder Metallurgy, Gothenburg, Sweden, 15–18 September 2013; European PM Conference Proceedings. The European Powder Metallurgy Association: Chantilly, Frane, 2013; p. 1. Available online: https://search.proquest.com/openview/e37e3a7bcef846f9eae895b6931bf2fa/1?pq-origsite=gscholar&cbl=596295 (accessed on 31 May 2024).
- Yang, H.; Li, S.; Li, Z.; Ji, F. Experimental and numerical study on the packing densification of metal powder with gaussian distribution. Metals 2020, 10, 1401. [Google Scholar] [CrossRef]
- Hajnys, J.; Pagac, M.; Mesicek, J.; Petru, J.; Spalek, F. Research of 316L Metallic Powder for Use in SLM 3D Printing. Adv. Mater. Sci. 2020, 20, 5–15. [Google Scholar] [CrossRef]
- Wei, C.; Li, L.; Zhang, X.; Chueh, Y.-H. 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. 2018, 67, 245–248. [Google Scholar] [CrossRef]
- Abu-Lebdeh, T.; Damptey, R.; Lamberti, V.; Hamoush, S. Powder Packing Density and Its Impact on SLM-Based Additive Manufacturing. In TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2019; pp. 355–367. ISBN 978-3-030-05860-9. Available online: https://link.springer.com/chapter/10.1007/978-3-030-05861-6_33 (accessed on 31 May 2024).
- Lee, Y.S.; Nandwana, P.; Zhang, W. Dynamic simulation of powder packing structure for powder bed additive manufacturing. Int. J. Adv. Manuf. Technol. 2018, 96, 1507–1520. [Google Scholar] [CrossRef]
- Bai, Y.; Wagner, G.; Williams, C.B. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. J. Manuf. Sci. Eng. 2017, 139, 081019. [Google Scholar] [CrossRef]
- Popovich, A.; Sufiiarov, V. Metal powder additive manufacturing. In New Trends in 3D Printing. IntechOpen: London, UK, 2016; Available online: https://books.google.com/books?hl=en&lr=&id=fm-QDwAAQBAJ&oi=fnd&pg=PA215&dq=3D+printing+powder+shape+metals&ots=xzgQvpzo1X&sig=zi9hFurVgnILcUYm2IvY0l71UM4 (accessed on 31 May 2024).
- Spierings, A.B.; Voegtlin, M.; Bauer, T.; Wegener, K. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Prog. Addit. Manuf. 2016, 1, 9–20. [Google Scholar] [CrossRef]
- Vock, S.; Klöden, B.; Kirchner, A.; Weißgärber, T.; Kieback, B. Powders for powder bed fusion: A review. Prog. Addit. Manuf. 2019, 4, 383–397. [Google Scholar] [CrossRef]
- Sutton, A.T.; Kriewall, C.S.; Leu, M.-C.; Newkirk, J.W. Powders for additive manufacturing processes: Characterization techniques and effects on part properties. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 8–10 August 2016; Available online: https://scholarsmine.mst.edu/mec_aereng_facwork/3694/ (accessed on 31 May 2024).
- Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C 2017, 76, 1328–1343. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Karadge, M.; Rebak, R.B.; Gupta, V.K.; Prorok, B.C.; Lou, X. The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion. Addit. Manuf. 2020, 35, 101334. [Google Scholar] [CrossRef]
- Brandão, A.D.; Gerard, R.; Gumpinger, J.; Beretta, S.; Makaya, A.; Pambaguian, L.; Ghidini, T. Challenges in additive manufacturing of space parts: Powder feedstock cross-contamination and its impact on end products. Materials 2017, 10, 522. [Google Scholar] [CrossRef]
- Vluttert, N. The Absorption of Moisture by Metal Powder in a Humid Environment and the Effects on Its Composition. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, 2016. Available online: http://essay.utwente.nl/71620/ (accessed on 3 July 2024).
- Mukherjee, T.; Elmer, J.W.; Wei, H.L.; Lienert, T.J.; Zhang, W.; Kou, S.; DebRoy, T. Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components. Prog. Mater. Sci. 2023, 138, 101153. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Nabaa, A.; Hojjatzadeh, S.M.H.; Young, Z.A.; Chen, L. Controlling process instability for defect lean metal additive manufacturing. Nat. Commun. 2022, 13, 1079. [Google Scholar] [CrossRef] [PubMed]
- Lanzutti, A.; Sordetti, F.; Montanari, R.; Varone, A.; Marin, E.; Andreatta, F.; Maschio, S.; Furlani, E.; Magnan, M.; Vaglio, E. Effect of powder recycling on inclusion content and distribution in AISI 316L produced by L-PBF technique. J. Mater. Res. Technol. 2023, 23, 3638–3650. [Google Scholar] [CrossRef]
- Soltani-Tehrani, A.; Isaac, J.P.; Tippur, H.V.; Silva, D.F.; Shao, S.; Shamsaei, N. Ti-6Al-4V powder reuse in laser powder bed fusion (L-PBF): The effect on porosity, microstructure, and mechanical behavior. Int. J. Fatigue 2023, 167, 107343. [Google Scholar] [CrossRef]
- Ghods, S.; Schur, R.; Schultz, E.; Pahuja, R.; Montelione, A.; Wisdom, C.; Arola, D.; Ramulu, M. Powder reuse and its contribution to porosity in additive manufacturing of Ti6Al4V. Materialia 2021, 15, 100992. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, S.Y.; Tan, P.; Wang, J.; Xiang, C.S.; Tang, H.P. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018, 333, 38–46. [Google Scholar] [CrossRef]
- Denti, L.; Sola, A.; Defanti, S.; Sciancalepore, C.; Bondioli, F. Effect of powder recycling in laser-based powder bed fusion of Ti-6Al-4V. Manuf. Technol. 2019, 19, 190–196. [Google Scholar] [CrossRef]
- Gruber, K.; Smolina, I.; Kasprowicz, M.; Kurzynowski, T. Evaluation of Inconel 718 Metallic Powder to Optimize the Reuse of Powder and to Improve the Performance and Sustainability of the Laser Powder Bed Fusion (LPBF) Process. Materials 2021, 14, 1538. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, M.; Luan, B. Influence of Inconel 625 alloy powder reusing on feedstock characteristics and mechanical properties of deposited parts. J. Mater. Res. Technol. 2024, 29, 3782–3794. [Google Scholar] [CrossRef]
- Rock, C.; Ledford, C.; Garcia-Avila, M.; West, H. The Influence of Powder Reuse on the Properties of Nickel Super Alloy ATI 718TM in Laser Powder Bed Fusion Additive Manufacturing. Metall. Mater. Trans. B 2021, 52, 676–688. [Google Scholar] [CrossRef]
- Radchenko, O.K.; Gogaev, K.O. Requirements for Metal and Alloy Powders for 3D Printing (Review). Powder Metall. Met. Ceram. 2022, 61, 135–154. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Q.; Zhang, Y.; Chen, F.; Shi, Y.; Yan, W. Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling. Acta Mater. 2019, 179, 158–171. [Google Scholar] [CrossRef]
- Ji, L.; Wang, C.; Wu, W.; Tan, C.; Wang, G.; Duan, X.-M. Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing. Powder Metall. Met. Ceram. 2017, 48, 4831–4841. [Google Scholar] [CrossRef]
- Powell, D.; Rennie, A.E.; Geekie, L.; Burns, N. Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J. Clean. Prod. 2020, 268, 122077. [Google Scholar] [CrossRef]
- de Mattos Nascimento, D.L.; Mury Nepomuceno, R.; Caiado, R.G.G.; Maqueira, J.M.; Moyano-Fuentes, J.; Garza-Reyes, J.A. A sustainable circular 3D printing model for recycling metal scrap in the automotive industry. J. Manuf. Technol. Manag. 2022, 33, 876–892. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the environmental impacts of 3D printing technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Duda, T.; Raghavan, L.V. 3D metal printing technology: The need to re-invent design practice. AI Soc. 2018, 33, 241–252. [Google Scholar] [CrossRef]
- Duda, T.; Raghavan, L.V. 3D metal printing technology. IFAC-Pap. 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Atzeni, E.; Salmi, A. Economics of additive manufacturing for end-usable metal parts. Int. J. Adv. Manuf. Technol. 2012, 62, 1147–1155. [Google Scholar] [CrossRef]
- Jiménez, M.; Romero, L.; Domínguez, I.A.; Espinosa, M.D.M.; Domínguez, M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity 2019, 2019, 1–30. [Google Scholar] [CrossRef]
- Embia, G.; Moharana, B.R.; Mohamed, A.; Muduli, K.; Muhammad, N.B. 3D Printing Pathways for Sustainable Manufacturing. In New Horizons for Industry 4.0 in Modern Business; Nayyar, A., Naved, M., Rameshwar, R., Eds.; Contributions to Environmental Sciences & Innovative Business Technology; Springer International Publishing: Cham, Switzerland, 2023; pp. 253–272. ISBN 978-3-031-20442-5. Available online: https://link.springer.com/10.1007/978-3-031-20443-2_12 (accessed on 5 July 2024).
- Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Shankar, S.; Jawahir, I.S.; Dixit, S.; Buddhi, D. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J. Mater. Res. Technol. 2022, 18, 4641–4661. [Google Scholar] [CrossRef]
- Carrozza, A.; Aversa, A.; Fino, P.; Lombardi, M. A study on the microstructure and mechanical properties of the Ti-6Al-2Sn-4Zr-6Mo alloy produced via Laser Powder Bed Fusion. J. Alloys Compd. 2021, 870, 159329. [Google Scholar] [CrossRef]
- Gao, P.; Wei, K.; Yu, H.; Yang, J.; Wang, Z.; Zeng, X. Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5 Sn alloy. Acta Metall. Sin. 2018, 54, 999–1009. [Google Scholar]
- Wu, A.S.; Brown, D.W.; Kumar, M.; Gallegos, G.F.; King, W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A 2014, 45, 6260–6270. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Arbeiter, F.; Schlauf, T.; Kukla, C.; Holzer, C. Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing. Mater. Lett. 2019, 248, 165–168. [Google Scholar] [CrossRef]
- Wang, Z.; Palmer, T.A.; Beese, A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater. 2016, 110, 226–235. [Google Scholar] [CrossRef]
- Nong, X.D.; Zhou, X.L.; Wang, Y.D.; Yu, L.; Li, J.H. Effects of geometry, location, and direction on microstructure and mechanical properties of 15–5PH stainless steel fabricated by directed energy deposition. Mater. Sci. Eng. A 2021, 821, 141587. [Google Scholar] [CrossRef]
- Zhu, B.; Lin, J.; Lei, Y.; Zhang, Y.; Sun, Q.; Cheng, S. Additively manufactured δ-ferrite-free 410 stainless steel with desirable performance. Mater. Lett. 2021, 293, 129579. [Google Scholar] [CrossRef]
- Rosenthal, I.; Stern, A.; Frage, N. Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology. Metallogr. Microstruct. Anal. 2014, 3, 448–453. [Google Scholar] [CrossRef]
- Roberts, C.E.; Bourell, D.; Watt, T.; Cohen, J. A novel processing approach for additive manufacturing of commercial aluminum alloys. Phys. Procedia 2016, 83, 909–917. [Google Scholar] [CrossRef]
- Rashid, R.; Masood, S.H.; Ruan, D.; Palanisamy, S.; Rashid, R.R.; Elambasseril, J.; Brandt, M. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy. Addit. Manuf. 2018, 22, 426–439. [Google Scholar] [CrossRef]
- Muñiz-Lerma, J.A.; Nommeots-Nomm, A.; Waters, K.E.; Brochu, M. A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: A case study on AlSi7Mg. Materials 2018, 11, 2386. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Gu, D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 2014, 585, 713–721. [Google Scholar] [CrossRef]
- Karmuhilan, M.; Kumanan, S. A Review on Additive Manufacturing Processes of Inconel 625. J. Mater. Eng. Perform. 2022, 31, 2583–2592. [Google Scholar] [CrossRef]
- Han, Q.; Gu, Y.; Setchi, R.; Lacan, F.; Johnston, R.; Evans, S.L.; Yang, S. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy. Addit. Manuf. 2019, 30, 100919. [Google Scholar] [CrossRef]
- Kannan, A.R.; Kumar, S.M.; Pramod, R.; Shanmugam, N.S.; Vishnukumar, M.; Channabasavanna, S.G. Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing. Mater. Lett. 2022, 308, 131262. [Google Scholar] [CrossRef]
- Atabay, S.E.; Sanchez-Mata, O.; Muñiz-Lerma, J.A.; Gauvin, R.; Brochu, M. Microstructure and mechanical properties of rene 41 alloy manufactured by laser powder bed fusion. Mater. Sci. Eng. A 2020, 773, 138849. [Google Scholar] [CrossRef]
- Mordas, G.; Jasulaitienė, V.; Steponavičiūtė, A.; Gaspariūnas, M.; Petkevič, R.; Selskienė, A.; Juškėnas, R.; Paul, D.F.; Mann, J.E.; Remeikis, V.; et al. Characterisation of CoCrMo powder for additive manufacturing. Int. J. Adv. Manuf. Technol. 2020, 111, 3083–3093. [Google Scholar] [CrossRef]
- Miyake, M.; Matsuda, T.; Sano, T.; Hirose, A.; Shiomi, Y.; Sasaki, M. Microstructure and mechanical properties of additively manufactured CoCrW alloy using laser metal deposition. Weld. World 2020, 64, 1397–1407. [Google Scholar] [CrossRef]
- Liu, R.; Dang, X.; Peng, Y.; Wu, T. Microstructure and Wear Behavior of Laser Cladded CoCrNiMox Coatings on the Low Carbon Steel. Crystals 2022, 12, 1229. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, G. New process for integrated manufacturing of copper alloy shells by bimetal 3D printing remanufacturing technology. Energy Rep. 2022, 8, 11052–11063. [Google Scholar] [CrossRef]
- Tran, T.Q.; Chinnappan, A.; Lee, J.K.Y.; Loc, N.H.; Tran, L.T.; Wang, G.; Kumar, V.V.; Jayathilaka, W.; Ji, D.; Doddamani, M. 3D printing of highly pure copper. Metals 2019, 9, 756. [Google Scholar] [CrossRef]
- El-Wardany, T.; She, Y.; Jagdale, V.; Garofano, J.K.; Liou, J.; Schmidt, W. Challenges in 3D printing of high conductivity copper. In Proceedings of the International Electronic Packaging Technical Conference and Exhibition, San Francisco, CA, USA, 29 August–1 September 2017; p. V001T01A005. Available online: https://asmedigitalcollection.asme.org/InterPACK/proceedings-abstract/InterPACK2017/58097/266256 (accessed on 2 July 2024).
- Constantin, L.; Wu, Z.; Li, N.; Fan, L.; Silvain, J.-F.; Lu, Y.F. Laser 3D printing of complex copper structures. Addit. Manuf. 2020, 35, 101268. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012, 541, 177–185. [Google Scholar] [CrossRef]
- He, B.; Wu, W.; Zhang, L.; Lu, L.; Yang, Q.; Long, Q.; Chang, K. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum 2018, 150, 79–83. [Google Scholar] [CrossRef]
- Singla, A.K.; Banerjee, M.; Sharma, A.; Singh, J.; Bansal, A.; Gupta, M.K.; Khanna, N.; Shahi, A.S.; Goyal, D.K. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments. J. Manuf. Process. 2021, 64, 161–187. [Google Scholar] [CrossRef]
- Kolamroudi, M.K.; Asmael, M.; Ilkan, M.; Kordani, N. Developments on Electron Beam Melting (EBM) of Ti–6Al–4V: A Review. Trans. Indian Inst. Met. 2021, 74, 783–790. [Google Scholar] [CrossRef]
- Tamayo, J.A.; Riascos, M.; Vargas, C.A.; Baena, L.M. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021, 7, e06892. [Google Scholar] [CrossRef]
- Ran, J.; Jiang, F.; Sun, X.; Chen, Z.; Tian, C.; Zhao, H. Microstructure and mechanical properties of Ti-6Al-4V fabricated by electron beam melting. Crystals 2020, 10, 972. [Google Scholar] [CrossRef]
- Silvestri, A.T.; Foglia, S.; Borrelli, R.; Franchitti, S.; Pirozzi, C.; Astarita, A. Electron beam melting of Ti6Al4V: Role of the process parameters under the same energy density. J. Manuf. Process. 2020, 60, 162–179. [Google Scholar] [CrossRef]
- Shrestha, S.; Panakarajupally, R.P.; Kannan, M.; Morscher, G.; Gyekenyesi, A.L.; Scott-Emuakpor, O.E. Analysis of microstructure and mechanical properties of additive repaired Ti–6Al–4V by Direct Energy Deposition. Mater. Sci. Eng. A 2021, 806, 140604. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, E.S.; Park, S.; Park, J.M.; Seol, J.B.; Kim, H.S.; Lee, T.; Sung, H.; Kim, J.G. Effects of Laser Power on the Microstructure Evolution and Mechanical Properties of Ti–6Al–4V Alloy Manufactured by Direct Energy Deposition. Met. Mater. Int. 2022, 28, 197–204. [Google Scholar] [CrossRef]
- Gorunov, A.I. Additive manufacturing of Ti6Al4V parts using ultrasonic assisted direct energy deposition. J. Manuf. Process. 2020, 59, 545–556. [Google Scholar] [CrossRef]
- Stevens, E.; Schloder, S.; Bono, E.; Schmidt, D.; Chmielus, M. Density variation in binder jetting 3D-printed and sintered Ti-6Al-4V. Addit. Manuf. 2018, 22, 746–752. [Google Scholar] [CrossRef]
- Simchi, A.; Petzoldt, F.; Hartwig, T.; Hein, S.B.; Barthel, B.; Reineke, L. Microstructural development during additive manufacturing of biomedical grade Ti-6Al-4V alloy by three-dimensional binder jetting: Material aspects and mechanical properties. Int. J. Adv. Manuf. Technol. 2023, 127, 1541–1558. [Google Scholar] [CrossRef]
- Yadav, P.; Fu, Z.; Knorr, M.; Travitzky, N. Binder Jetting 3D Printing of Titanium Aluminides Based Materials: A Feasibility Study. Adv. Eng. Mater. 2020, 22, 2000408. [Google Scholar] [CrossRef]
- Janzen, K.; Kallies, K.J. Fabrication of patient-specific finger joint implants from Ti-6Al-4V using metal binder jetting. Trans. Addit. Manuf. Meets Med. 2023, 5, 830. [Google Scholar]
- Fan, H.; Yang, S. Effects of direct aging on near-alpha Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM). Mater. Sci. Eng. A 2020, 788, 139533. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Y.; Yang, S. Martensite decomposition during post-heat treatments and the aging response of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM). J. Micromech. Mol. Phys. 2021, 06, 2050018. [Google Scholar] [CrossRef]
- Roshani, M.; Abedi, H.R.; Saboori, A. Comparing the Cold, Warm, and Hot Deformation Flow Behavior of Selective Laser-Melted and Electron-Beam-Melted Ti–6Al–2Sn–4Zr–2Mo Alloy. Adv. Eng. Mater. 2024, 26, 2301046. [Google Scholar] [CrossRef]
- Chamanfar, A.; Pasang, T.; Ventura, A.; Misiolek, W.Z. Mechanical properties and microstructure of laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy. Mater. Sci. Eng. A 2016, 663, 213–224. [Google Scholar] [CrossRef]
- Galati, M.; Defanti, S.; Saboori, A.; Rizza, G.; Tognoli, E.; Vincenzi, N.; Gatto, A.; Iuliano, L. An investigation on the processing conditions of Ti-6Al-2Sn-4Zr-2Mo by electron beam powder bed fusion: Microstructure, defect distribution, mechanical properties and dimensional accuracy. Addit. Manuf. 2022, 50, 102564. [Google Scholar] [CrossRef]
- Galati, M.; Giordano, M.; Saboori, A.; Defanti, S. Electron beam powder bed fusion of Ti-6Al-2Sn-4Zr-2Mo lattice structures: Morphometrical and mechanical characterisations. Int. J. Adv. Manuf. Technol. 2024, 131, 1223–1239. [Google Scholar] [CrossRef]
- Lopez, M.; Pickett, C.; Arrieta, E.; Murr, L.E.; Wicker, R.B.; Ahlfors, M.; Godfrey, D.; Medina, F. Effects of postprocess hot isostatic pressing treatments on the mechanical performance of EBM fabricated TI-6Al-2Sn-4Zr-2Mo. Materials 2020, 13, 2604. [Google Scholar] [CrossRef]
- Carrozza, A.; Aversa, A.; Fino, P.; Lombardi, M. Towards customized heat treatments and mechanical properties in the LPBF-processed Ti-6Al-2Sn-4Zr-6Mo alloy. Mater. Des. 2022, 215, 110512. [Google Scholar] [CrossRef]
- Hassanin, H.; Zweiri, Y.; Finet, L.; Essa, K.; Qiu, C.; Attallah, M. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials 2021, 14, 2056. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wu, S.; Kan, W.H.; Lim, S.C.V.; Zhu, Y.; Huang, A. Rapid hardening response of ultra-hard Ti-6Al-2Sn-4Zr-6Mo alloy produced by laser powder bed fusion. Scr. Mater. 2023, 226, 115209. [Google Scholar] [CrossRef]
- Wei, K.; Wang, Z.; Zeng, X. Preliminary investigation on selective laser melting of Ti-5Al-2.5 Sn α-Ti alloy: From single tracks to bulk 3D components. J. Mater. Process. Technol. 2017, 244, 73–85. [Google Scholar] [CrossRef]
- Wei, K.; Wang, Z.; Zeng, X. Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5 Sn α titanium alloy. Mater. Sci. Eng. A 2018, 709, 301–311. [Google Scholar] [CrossRef]
- Wei, K.; Lv, M.; Zeng, X.; Xiao, Z.; Huang, G.; Liu, M.; Deng, J. Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5 Sn alloy. Mater. Charact. 2019, 150, 67–77. [Google Scholar] [CrossRef]
- Wei, K.; Wang, Z.; Li, F.; Zhang, H.; Zeng, X. Densification behavior, microstructure evolution, and mechanical performances of selective laser melted Ti-5Al-2.5 Sn α titanium alloy: Effect of laser energy input. J. Alloys Compd. 2019, 774, 1024–1035. [Google Scholar] [CrossRef]
- Zhang, G.; Xiong, H.; Yu, H.; Qin, R.; Liu, W.; Yuan, H. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments. Mater. Des. 2020, 195, 109063. [Google Scholar] [CrossRef]
- Popovski, M.; Qiu, D.; Easton, M.; Barter, S.; Liu, Q.; Das, R. Additively manufactured pearlitic titanium-copper alloys: The effect of copper concentration on the microstructure and hardness. In Proceedings of the AIAC 2023: 20th Australian International Aerospace Congress: 20th Australian International Aerospace Congress, Melbourne, Australia, 27 February–2 March 2023; pp. 133–139. Available online: https://search.informit.org/doi/abs/10.3316/informit.063527078236645 (accessed on 14 June 2024).
- Brooke, R.; Zhang, D.; Qiu, D.; Gibson, M.A.; Mayes, E.; Moravek, T.; Shankar, N.B.; Chandran, N.; Banerjee, R.; Easton, M. Novel bainitic Ti alloys designed for Additive manufacturing. Mater. Des. 2024, 244, 113176. [Google Scholar] [CrossRef]
- Zhang, D.; Qiu, D.; Gibson, M.A.; Zheng, Y.; Fraser, H.L.; StJohn, D.H.; Easton, M.A. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 2019, 576, 91–95. [Google Scholar] [CrossRef]
- Kang, N.; Lin, X.; Coddet, C.; Wen, X.; Huang, W. Selective laser melting of low modulus Ti-Mo alloy: α/β heterogeneous conchoidal structure. Mater. Lett. 2020, 267, 127544. [Google Scholar] [CrossRef]
- Chen, J.; Liao, X.; Shu, J.; Zhou, L.; Li, C.; Ren, Y.; Niu, Y. Microstructure tailoring of Ti–15Mo alloy fabricated by selective laser melting with high strength and ductility. Mater. Sci. Eng. A 2021, 826, 141962. [Google Scholar] [CrossRef]
- Xu, H.; Li, Z.; Dong, A.; Xing, H.; Zhang, T.; Wang, D.; Zhu, G.; Sun, B. Study of superior strength in Ti15Mo alloy manufactured using selective laser melting. J. Alloys Compd. 2021, 885, 161186. [Google Scholar] [CrossRef]
- Yao, K.; Min, X.; Shi, S.; Tan, Y. Volatilization behavior of β-type Ti-Mo alloy manufactured by electron beam melting. Metals 2018, 8, 206. [Google Scholar] [CrossRef]
- Duport, M.; Lhuisser, P.; Blandin, J.-J.; Dendievel, R.; Veron, M.; Prima, F.; Martin, G. Processing, microstructures and mechanical response of a β-metastable Ti-14Mo alloy fabricated by Electron Beam Powder Bed Fusion. Addit. Manuf. 2023, 61, 103340. [Google Scholar] [CrossRef]
- Bhardwaj, T.; Shukla, M.; Paul, C.P.; Bindra, K.S. Direct energy deposition-laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties. J. Alloys Compd. 2019, 787, 1238–1248. [Google Scholar] [CrossRef]
- Kang, N.; Wu, K.; Kang, J.; Li, J.; Lin, X.; Huang, W. Effect of cycling heat treatment on the microstructure, phase, and compression behaviour of directed energy deposited Ti-Mo alloys. Light Adv. Manuf. 2021, 2, 136. [Google Scholar] [CrossRef]
- Tan, H.; Hu, T.; Zhang, F.; Qiu, Y.; Clare, A.T. Direct Metal Deposition of Satellited Ti-15Mo: Microstructure and Mechanical Properties. Adv. Eng. Mater. 2019, 21, 1900152. [Google Scholar] [CrossRef]
- Yu, J. Establishing Novel Titanium-Based Candidate Materials for Selective Laser Melting. Ph.D. Thesis, University of Miami, Miami, FL, USA, 2020. Available online: https://scholarship.miami.edu/view/pdfCoverPage?instCode=01UOML_INST&filePid=13372067130002976&download=true (accessed on 25 July 2024).
- Zhang, K.; Kan, W.H.; Zhu, Y.; Lim, S.C.V.; Gao, X.; Sit, C.K.; Bai, C.; Huang, A. Achieving ultra-high strength rapidly in Ti-3Al-8V-6Cr-4Mo-4Zr alloy processed by directed energy deposition. Mater. Des. 2022, 224, 111325. [Google Scholar] [CrossRef]
- Carlton, H.D.; Klein, K.D.; Elmer, J.W. Evolution of microstructure and mechanical properties of selective laser melted Ti-5Al-5V-5Mo-3Cr after heat treatments. Sci. Technol. Weld. Join. 2019, 24, 465–473. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, X.; Li, S.; Zhu, Y. Effect of laser scanning speed on microstructure and mechanical properties of SLM porous Ti-5Al-5V-5Mo-3Cr-1Fe alloy. Front. Mater. 2022, 9, 973829. [Google Scholar] [CrossRef]
- Lee, C.H.; Kühn, U.; Lee, S.C.; Park, S.J.; Schwab, H.; Scudino, S.; Kosiba, K. Optimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence. J. Alloys Compd. 2021, 862, 158018. [Google Scholar]
- Chlebus, E.; Kuźnicka, B.; Kurzynowski, T.; Dybała, B. Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting. Mater. Charact. 2011, 62, 488–495. [Google Scholar] [CrossRef]
- Sercombe, T.; Jones, N.; Day, R.; Kop, A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyp. J. 2008, 14, 300–304. [Google Scholar] [CrossRef]
- Pawlak, A.; Szymczyk, P.; Ziolkowski, G.; Chlebus, E.; Dybala, B. Fabrication of microscaffolds from Ti-6Al-7Nb alloy by SLM. Rapid Prototyp. J. 2015, 21, 393–401. [Google Scholar] [CrossRef]
- Marcu, T.; Todea, M.; Gligor, I.; Berce, P.; Popa, C. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl. Surf. Sci. 2012, 258, 3276–3282. [Google Scholar] [CrossRef]
- Macias-Sifuentes, M.A.; Xu, C.; Sanchez-Mata, O.; Kwon, S.Y.; Atabay, S.E.; Muñiz-Lerma, J.A.; Brochu, M. Microstructure and mechanical properties of β-21S Ti alloy fabricated through laser powder bed fusion. Prog. Addit. Manuf. 2021, 6, 417–430. [Google Scholar] [CrossRef]
- Akmal, M.; Jeong, W.; Ryu, H.J. Ti-Zr-Nb based BCC alloy containing Mo prepared by laser directed energy deposition—Ømega phase and cellular structure. J. Alloys Compd. 2023, 969, 172306. [Google Scholar] [CrossRef]
- Rudolph, S.M. Near-Beta Titanium Alloys Produced Using Laser Powder-Bed Fusion. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2023. Available online: https://scholar.sun.ac.za/bitstream/10019.1/126995/1/rudolph_nearbeta_2023.pdf (accessed on 25 July 2024).
- Wei, K.; Zeng, X.; Huang, G.; Deng, J.; Liu, M. Selective laser melting of Ti-5Al-2.5 Sn alloy with isotropic tensile properties: The combined effect of densification state, microstructural morphology, and crystallographic orientation characteristics. J. Mater. Process. Technol. 2019, 271, 368–376. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Wu, H.; Zhang, W.; Guo, W.; Tang, H.; Liu, N. Microstructures and wear properties of surface treated Ti–36Nb–2Ta–3Zr–0.35 O alloy by electron beam melting (EBM). Appl. Surf. Sci. 2015, 357, 2347–2354. [Google Scholar] [CrossRef]
- Surmeneva, M.; Grubova, I.; Glukhova, N.; Khrapov, D.; Koptyug, A.; Volkova, A.; Ivanov, Y.; Cotrut, C.M.; Vladescu, A.; Teresov, A. New Ti–35Nb–7Zr–5Ta alloy manufacturing by electron beam melting for medical application followed by high current pulsed electron beam treatment. Metals 2021, 11, 1066. [Google Scholar] [CrossRef]
- Narayana, P.L.; Kim, J.H.; Hong, J.-K. Microstructural evolution and tensile properties of direct energy deposited Ti-4Al-5Co-0.25 Si alloy during heat treatment. J. Alloys Compd. 2024, 993, 174657. [Google Scholar] [CrossRef]
- Attar, H.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 2014, 593, 170–177. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Wu, X.; Dargusch, M.S. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater. Sci. Eng. A 2017, 705, 385–393. [Google Scholar] [CrossRef]
- Santos, E.C.; Osakada, K.; Shiomi, M.; Kitamura, Y.; Abe, F. Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2004, 218, 711–719. [Google Scholar] [CrossRef]
- Li, X.P.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective. Mater. Des. 2017, 116, 352–358. [Google Scholar] [CrossRef]
- Yamanaka, K.; Saito, W.; Mori, M.; Matsumoto, H.; Chiba, A. Preparation of weak-textured commercially pure titanium by electron beam melting. Addit. Manuf. 2015, 8, 105–109. [Google Scholar] [CrossRef]
- Park, H.K.; Ahn, Y.K.; Lee, B.S.; Jung, K.H.; Lee, C.W.; Kim, H.G. Refining effect of electron beam melting on additive manufacturing of pure titanium products. Mater. Lett. 2017, 187, 98–100. [Google Scholar] [CrossRef]
- Yamanaka, K.; Saito, W.; Mori, M.; Matsumoto, H.; Sato, S.; Chiba, A. Abnormal grain growth in commercially pure titanium during additive manufacturing with electron beam melting. Materialia 2019, 6, 100281. [Google Scholar] [CrossRef]
- Gushchina, M.O.; Kuzminova, Y.O.; Dubinin, O.N.; Evlashin, S.A.; Vildanov, A.M.; Klimova-Korsmik, O.G.; Turichin, G.A. Multilayer composite Ti-6Al-4 V/Cp-Ti alloy produced by laser direct energy deposition. Int. J. Adv. Manuf. Technol. 2023, 124, 907–918. [Google Scholar] [CrossRef]
- Barro, O.; Arias-González, F.; Lusquiños, F.; Comesaña, R.; del Val, J.; Riveiro, A.; Badaoui, A.; Gómez-Baño, F.; Pou, J. Improved commercially pure titanium obtained by laser directed energy deposition for dental prosthetic applications. Metals 2020, 11, 70. [Google Scholar] [CrossRef]
- Wheat, E. Process Mapping and Optimization of Titanium Parts Made by Binder Jetting Additive Manufacturing. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2018. [Google Scholar]
- Wheat, E.; Vlasea, M.; Hinebaugh, J.; Metcalfe, C. Data related to the sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing. Data Brief 2018, 20, 1029–1038. [Google Scholar] [CrossRef]
- Irgolič, T.; Potočnik, D.; Ficko, M.; Kirbiš, P. Microstructural characterization of laser cladded AISI 316 stainless steel on a carbon steel substrate. Adv. Technol. Mater. 2019, 44, 1–5. [Google Scholar] [CrossRef]
- Rivolta, B.; Gerosa, R.; Crema, L.; Alberti, F. Characterization of Selective Laser Melting materials for micro co-generation solar plant components. In the Proceedings of DIGESPO 2013. Available online: https://www.researchgate.net/profile/Fabrizio-Alberti-2/publication/322315847_Characterization_of_Selective_Laser_Melting_materials_for_micro_co-generation_solar_plant_components/links/5a53a4130f7e9bbc1057003d/Characterization-of-Selective-Laser-Melting-materials-for-micro-co-generation-solar-plant-components.pdf (accessed on 25 July 2024).
- Abolhasani, D.; Seyedkashi, S.M.H.; Hoseinpour Gollo, M.; Moon, Y.H. Effects of laser beam parameters on bendability and microstructure of stainless steel in three-dimensional laser forming. Appl. Sci. 2019, 9, 4463. [Google Scholar] [CrossRef]
- Ritchie, M.; Lee, P.D.; Mitchell, A.; Cockcroft, S.L.; Wang, T. X-ray-based measurement of composition during electron beam melting of AISI 316 stainless steel: Part II. Evaporative processes and simulation. Metall. Mater. Trans. A 2003, 34, 863–877. [Google Scholar] [CrossRef]
- Shamsaei, N.; Simsiriwong, J. Fatigue behaviour of additively-manufactured metallic parts. Procedia Struct. Integr. 2017, 7, 3–10. [Google Scholar] [CrossRef]
- Krankenhagen, R. Thermographic Investigation of the Anisotropic Behaviour of Additively Manufactured AISI 316 Steel Using DED-arc. 2024. Available online: https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/60574 (accessed on 25 July 2024).
- Wang, C.; Tan, X.; Liu, E.; Tor, S.B. Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater. Des. 2018, 147, 157–166. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Mai, S.; Wang, D.; Song, C. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater. Des. 2015, 87, 797–806. [Google Scholar] [CrossRef]
- D’Andrea, D.; Risitano, G.; Guglielmino, E.; Piperopoulos, E.; Santonocito, D. Correlation between mechanical behaviour and microstructural features of AISI 316L produced by SLM. Procedia Struct. Integr. 2022, 41, 199–207. [Google Scholar] [CrossRef]
- D’Andrea, D. Additive manufacturing of AISI 316L stainless steel: A review. Metals 2023, 13, 1370. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review. Appl. Sci. 2020, 10, 3310. [Google Scholar] [CrossRef]
- Ostolaza, M.; Arrizubieta, J.I.; Lamikiz, A.; Cortina, M. Functionally graded AISI 316L and AISI H13 manufactured by L-DED for die and mould applications. Appl. Sci. 2021, 11, 771. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Bosio, F.; Bassini, E.; Librera, E.; De Chirico, M.; Biamino, S.; Ugues, D.; Fino, P.; Lombardi, M. An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition. Mater. Sci. Eng. A 2019, 766, 138360. [Google Scholar] [CrossRef]
- Aversa, A.; Marchese, G.; Bassini, E. Directed energy deposition of aisi 316l stainless steel powder: Effect of process parameters. Metals 2021, 11, 932. [Google Scholar] [CrossRef]
- Atapour, M.; Wang, X.; Persson, M.; Wallinder, I.O.; Hedberg, Y.S. Corrosion of Binder Jetting Additively Manufactured 316L Stainless Steel of Different Surface Finish. J. Electrochem. Soc. 2020, 167, 131503. [Google Scholar] [CrossRef]
- Zago, M.; Lecis, N.; Mariani, M.; Cristofolini, I. Analysis of the causes determining dimensional and geometrical errors in 316L and 17-4PH stainless steel parts fabricated by metal binder jetting. Int. J. Adv. Manuf. Technol. 2024, 132, 835–851. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process. 2019, 3, 82. [Google Scholar] [CrossRef]
- Pazzucconi, G. Properties of Binder Jetting 3D Printed 316L Stainless Steel. Master’s Thesis, The Polytechnic University of Milan, Milan, Italy, 2021. Available online: https://www.politesi.polimi.it/handle/10589/177760 (accessed on 25 July 2024).
- De Moura Filho, O.C.; Pacheco, J.T.; Veiga, M.T.; Teixeira, M.F.; Da Silva, L.J.; Da Costa, C.E.; Milan, J.C.G. Effect of Different Heat Treatment Routes on the Tribological Behavior of the Inconel 718 Alloy Deposited on Aisi 316 L by Laser Cladding. Lasers Manuf. Mater. Process. 2022, 9, 241–256. [Google Scholar] [CrossRef]
- Castanheira, L.C.L. Production of Sustainable Powders for Direct Energy Deposition (DED). Master’s Thesis, University of Porto, Porto, Portugal, 2022. Available online: https://repositorio-aberto.up.pt/bitstream/10216/145021/2/590264.pdf (accessed on 25 July 2024).
- Castanheira, L.; Reis, A.; Vieira, M.; Emadinia, O. Microstructural evolution of a printed AISI 303 upcycled powder on a dissimilar substrate. J. Mater. Res. Technol. 2024, 30, 2291–2298. [Google Scholar] [CrossRef]
- Castanheira, L.; Gil, J.; Amaral, R.; Vieira, T.; Reis, A.; Emadinia, O. Parametrization and characterization of DED printings using recycled AISI 303 powder particles. Powder Technol. 2024, 435, 119453. [Google Scholar] [CrossRef]
- Pasebani, S.; Ghayoor, M.; Badwe, S.; Irrinki, H.; Atre, S.V. Effects of atomizing media and post processing on mechanical properties of 17-4 PH stainless steel manufactured via selective laser melting. Addit. Manuf. 2018, 22, 127–137. [Google Scholar] [CrossRef]
- Vunnam, S.; Saboo, A.; Sudbrack, C.; Starr, T.L. Effect of powder chemical composition on the as-built microstructure of 17-4 PH stainless steel processed by selective laser melting. Addit. Manuf. 2019, 30, 100876. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Huang, P.-C.; Lee, M.-Y.; Chang, K.-C.; Lee, C.-C.; Li, M.-Y.; Chen, C.-P.; Jen, K.-K.; Yeh, A.-C. Effect of processing parameters on the fractions of martensite in 17-4 PH stainless steel fabricated by selective laser melting. J. Alloys Compd. 2021, 859, 157758. [Google Scholar] [CrossRef]
- Merlin, M.; Morales, C.; Ferroni, M.; Fortini, A.; Soffritti, C. Influence of Heat Treatment Parameters on the Microstructure of 17-4 PH Single Tracks Fabricated by Direct Energy Deposition. Appl. Sci. 2024, 14, 700. [Google Scholar] [CrossRef]
- Mathoho, I.; Akinlabi, E.T.; Arthur, N.; Tlotleng, M. Impact of DED process parameters on the metallurgical characteristics of 17-4 PH SS deposited using DED. CIRP J. Manuf. Sci. Technol. 2020, 31, 450–458. [Google Scholar] [CrossRef]
- Forcellese, P. Investigation of Corrosion Resistance of 17-4 PH Stainless Steel Additive-Manufactured by Bound Metal Deposition and Binder Jetting. Ph.D. Thesis, Marche Polytechnic University, Ancona, Italy, 2024. Available online: https://iris.univpm.it/handle/11566/329794 (accessed on 25 July 2024).
- Nezhadfar, P.D.; Verquin, B.; Lefebvre, F.; Reynaud, C.; Robert, M.; Shamsaei, N. Effect of Heat Treatment on the Tensile Behavior of 17-4 PH Stainless Steel Additively Manufactured by Metal Binder Jetting. In Proceedings of the 2021 International Solid Freeform Fabrication Symposium, Online, 2–4 August 2021; Available online: https://hdl.handle.net/2152/90692 (accessed on 25 July 2024).
- Emanuelli, L.; Segata, G.; Perina, M.; Regolini, M.; Nicchiotti, V.; Molinari, A. Study of microstructure and mechanical properties of 17-4 PH stainless steel produced via Binder Jetting. Powder Metall. 2023, 66, 377–386. [Google Scholar] [CrossRef]
- Abolhasani, D.; Seyedkashi, S.M.H.; Kang, N.; Kim, Y.J.; Woo, Y.Y.; Moon, Y.H. Analysis of Melt-Pool Behaviors during Selective Laser Melting of AISI 304 Stainless-Steel Composites. Metals 2019, 9, 876. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Yin, J.; Wang, Z.; Zeng, X. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel. Mater. Sci. Eng. A 2017, 695, 92–100. [Google Scholar] [CrossRef]
- Miyata, Y.; Okugawa, M.; Koizumi, Y.; Nakano, T. Inverse Columnar-Equiaxed Transition (CET) in 304 and 316L Stainless Steels Melt by Electron Beam for Additive Manufacturing (AM). Crystals 2021, 11, 856. [Google Scholar] [CrossRef]
- Hoosain, S.E.; Tshabalala, L.C.; Skhosana, S.; Freemantle, C.; Mndebele, N. Investigation of the properties of direct energy deposition additive manufactured 304 stainless steel. S. Afr. J. Ind. Eng. 2021, 32, 258–263. [Google Scholar] [CrossRef]
- Shin, S.; Kwon, S.-M.; Kim, C.; Lee, J.; Hwang, J.; Kim, H. Optimization of Direct Energy Deposition of 304L Stainless Steel through Laser Process Parameters. J. Weld. Join. 2021, 39, 182–188. [Google Scholar] [CrossRef]
- Pan, T.; Karnati, S.; Zhang, Y.; Zhang, X.; Hung, C.-H.; Li, L.; Liou, F. Experiment characterization and formulation estimation of tensile properties for selective laser melting manufactured 304L stainless steel. Mater. Sci. Eng. A 2020, 798, 140086. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, W.; Nguyen, Q.B.; An, X.; Lu, W.; Li, Z.; Ng, F.L.; Ling Nai, S.M.; Wei, J. Enhanced strength–ductility synergy and transformation-induced plasticity of the selective laser melting fabricated 304L stainless steel. Addit. Manuf. 2020, 35, 101300. [Google Scholar] [CrossRef]
- Ghayoor, M.; Lee, K.; He, Y.; Chang, C.; Paul, B.K.; Pasebani, S. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Addit. Manuf. 2020, 32, 101011. [Google Scholar] [CrossRef]
- Burkhardt, C.; Wendler, M.; Lehnert, R.; Hauser, M.; Clausnitzer, P.; Volkova, O.; Biermann, H.; Weidner, A. Fine-grained microstructure without texture obtained by electron beam powder bed fusion for AISI 304 L-based stainless steel. Addit. Manuf. 2023, 69, 103539. [Google Scholar] [CrossRef]
- Nong, X.D.; Zhou, X.L. Effect of scanning strategy on the microstructure, texture, and mechanical properties of 15-5PH stainless steel processed by selective laser melting. Mater. Charact. 2021, 174, 111012. [Google Scholar] [CrossRef]
- Sarkar, S.; Mukherjee, S.; Kumar, C.S.; Kumar Nath, A. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process. J. Manuf. Process. 2020, 50, 279–294. [Google Scholar] [CrossRef]
- Mansoura, A.; Dehghan, S.; Barka, N.; Sattarpanah Karganroudi, S.; Houria, M. Effect of heat treatment parameters on microstructure and microhardness of 15-5PH stainless steel fabricated by selective laser melting. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 424. [Google Scholar] [CrossRef]
- Tapoglou, N.; Clulow, J.; Patterson, A.; Curtis, D. Characterisation of mechanical properties of 15-5PH stainless steel manufactured through direct energy deposition. CIRP J. Manuf. Sci. Technol. 2022, 38, 172–185. [Google Scholar] [CrossRef]
- Tapoglou, N.; Clulow, J.; Curtis, D. Increased shielding of a Direct Energy Deposition process to enable Deposition of reactive materials; an investigation into Deposition of 15-5 PH Stainless Steel, Inconel 718 and Ti-6Al-4V. CIRP J. Manuf. Sci. Technol. 2022, 36, 227–235. [Google Scholar] [CrossRef]
- Das, T.; Roy, H.; Lohar, A.K.; Samanta, S.K. Mechanical and microstructural properties of laser direct energy deposited 15–5 PH and SS 316L stainless steel. Mater. Today Proc. 2022, 66, 3809–3813. [Google Scholar] [CrossRef]
- Suren, A. Laser Powder Bed Fusion of AISI 310S and Inconel 625 with CW and PW Emissions. Master’s Thesis, The Polytechnic University of Milan, Milan, Italy, 2021. Available online: https://www.politesi.polimi.it/handle/10589/177649 (accessed on 14 June 2024).
- Moskvina, V.; Astafurova, E.; Astafurov, S.; Reunova, K.; Panchenko, M.; Melnikov, E.; Kolubaev, E. Effect of Ion-plasma nitriding on phase composition and tensile properties of AISI 321-type stainless steel produced by wire-feed electron-beam additive manufacturing. Metals 2022, 12, 176. [Google Scholar] [CrossRef]
- Kalashnikov, K.N.; Khoroshko, K.S.; Kalashnikova, T.A.; Chumaevskii, A.V.; Filippov, A.V. Structural evolution of 321 stainless steel in electron beam freeform fabrication. J. Phys. Conf. Ser. 2018, 1115, 042049. [Google Scholar] [CrossRef]
- Yin, Q.; Chen, G.; Cao, H.; Zhang, G.; Zhang, B.; Wei, S. Transformation law of microstructure evolution and mechanical properties of electron beam freeform fabricated 321 austenitic stainless steel. Vacuum 2021, 194, 110594. [Google Scholar] [CrossRef]
- Liverani, E.; Fortunato, A. Additive manufacturing of AISI 420 stainless steel: Process validation, defect analysis and mechanical characterization in different process and post-process conditions. Int. J. Adv. Manuf. Technol. 2021, 117, 809–821. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Q.; Song, B.; Liu, Y.; Luo, X.; Wen, S.; Shi, Y. Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting. Mater. Manuf. Process. 2015, 30, 1283–1289. [Google Scholar] [CrossRef]
- Yang, X.H.; Jiang, C.M.; Ho, J.R.; Tung, P.C.; Lin, C.K. Effects of Laser Spot Size on the Mechanical Properties of AISI 420 Stainless Steel Fabricated by Selective Laser Melting. Materials 2021, 14, 4593. [Google Scholar] [CrossRef] [PubMed]
- Krakhmalev, P.; Yadroitsava, I.; Fredriksson, G.; Yadroitsev, I. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Mater. Des. 2015, 87, 380–385. [Google Scholar] [CrossRef]
- Hassan, M.M.; Radhakrishnan, M.; Otazu, D.; Lienert, T.; Anderoglu, O. Investigation of Microstructure and Mechanical Properties of Additive Manufactured AISI-420 Martensitic Steel Developed by Directed Energy Deposition Method. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Online, 1–5 November 2021. [Google Scholar] [CrossRef]
- Muthu, S.M.; Veeman, D.; Vijayakumar, A.; Prabu, S.S.; Sujai, S.; Arvind, M.; Gobinath, E. Evaluation of metallurgical and mechanical characteristics of the ferritic stainless steel AISI 430 produced by GTAW-based WAAM. Mater. Lett. 2024, 354, 135362. [Google Scholar] [CrossRef]
- Kim, H.; Liu, Z.; Cong, W.; Zhang, H.C. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping. Materials 2017, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Damon, J.; Koch, R.; Kaiser, D.; Graf, G.; Dietrich, S.; Schulze, V. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140. Addit. Manuf. 2019, 28, 275–284. [Google Scholar] [CrossRef]
- Haghdadi, N.; Ledermueller, C.; Chen, H.; Chen, Z.; Liu, Q.; Li, X.; Rohrer, G.; Liao, X.; Ringer, S.; Primig, S. Evolution of microstructure and mechanical properties in 2205 duplex stainless steels during additive manufacturing and heat treatment. Mater. Sci. Eng. A 2022, 835, 142695. [Google Scholar] [CrossRef]
- Piras, M.; Hor, A.; Charkaluk, E. Control of the Microstructure and Mechanical Properties of a Super Duplex SAF 2507 Steel Produced by Additive Manufacturing. In Advances in Additive Manufacturing: Materials, Processes and Applications; Mabrouki, T., Sahlaoui, H., Sallem, H., Ghanem, F., Benyahya, N., Eds.; Lecture Notes in Mechanical Engineering; Springer Nature: Cham, Switzerland, 2024; pp. 1–9. ISBN 978-3-031-47783-6. Available online: https://link.springer.com/10.1007/978-3-031-47784-3_1 (accessed on 14 June 2024).
- Vishnukumar, M.; Muthupandi, V.; Jerome, S. Microstructural characteristics, mechanical properties and corrosion performance of super austenitic stainless steel 904L produced by wire arc additive manufacturing. Mater. Today Commun. 2023, 35, 105801. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Lorusso, M.; Pakkanen, J.; Aversa, A.; Ambrosio, E.P.; Lombardi, M.; Fino, P.; Manfredi, D. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Materials 2017, 10, 76. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Kempen, K.; Thijs, L.; Yasa, E.; Badrossamay, M.; Verheecke, W.; Kruth, J.-P. Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg. In Proceedings of the 2011 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2011; Available online: https://hdl.handle.net/2152/88371 (accessed on 25 July 2024).
- Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M. Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization. J. Therm. Spray Tech. 2017, 26, 587–597. [Google Scholar] [CrossRef]
- Gong, J.; Wei, K.; Liu, M.; Song, W.; Li, X.; Zeng, X. Microstructure and mechanical properties of AlSi10Mg alloy built by laser powder bed fusion/direct energy deposition hybrid laser additive manufacturing. Addit. Manuf. 2022, 59, 103160. [Google Scholar] [CrossRef]
- Kiani, P.; Dupuy, A.D.; Ma, K.; Schoenung, J.M. Directed energy deposition of AlSi10Mg: Single track nonscalability and bulk properties. Mater. Des. 2020, 194, 108847. [Google Scholar] [CrossRef]
- Baitimerov, R.; Lykov, P.; Zherebtsov, D.; Radionova, L.; Shultc, A.; Prashanth, K.G. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting. Materials 2018, 11, 742. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Imran, M.; Wycisk, E.; Emmelmann, C.; Walther, F. Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 2015, 221, 205–213. [Google Scholar] [CrossRef]
- Rahman Rashid, R.A.; Ali, H.; Palanisamy, S.; Masood, S.H. Effect of process parameters on the surface characteristics of AlSi12 samples made via selective laser melting. Mater. Today Proc. 2017, 4, 8724–8730. [Google Scholar] [CrossRef]
- Shanmugam, R.; Chandran, J.; Vinayagam, M.; Fakron, O.; Dennison, S.; Romine, S. Comparative Study of Mechanical Properties of Aluminum Alloy A356 (Al-12Si) Fabricated by Directed Energy. In Proceedings of the 2022 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 25–27 July 2022; Available online: https://hdl.handle.net/2152/117449 (accessed on 25 July 2024).
- Rodríguez-González, P.; Zapico, P.; Robles-Valero, P.E.; Barreiro, J. Novel post-processing procedure to enhance casting molds manufactured by binder jetting AM. Addit. Manuf. 2022, 59, 103142. [Google Scholar] [CrossRef]
- Lupi, G.; de Menezes, J.T.O.; Belelli, F.; Bruzzo, F.; López, E.; Volpp, J.; Castrodeza, E.M.; Casati, R. Fracture toughness of AlSi10Mg alloy produced by direct energy deposition with different crack plane orientations. Mater. Today Commun. 2023, 37, 107460. [Google Scholar] [CrossRef]
- Kumar, M.; Gibbons, G.J.; Das, A.; Manna, I.; Tanner, D.; Kotadia, H.R. Additive manufacturing of aluminium alloy 2024 by laser powder bed fusion: Microstructural evolution, defects and mechanical properties. Rapid Prototyp. J. 2021, 27, 1388–1397. [Google Scholar] [CrossRef]
- Pekok, M.A.; Setchi, R.; Ryan, M.; Han, Q.; Gu, D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int. J. Adv. Manuf. Technol. 2021, 112, 175–192. [Google Scholar] [CrossRef]
- Ahmed, M.M.; El-Sayed Seleman, M.M.; Elfishawy, E.; Alzahrani, B.; Touileb, K.; Habba, M.I. The effect of temper condition and feeding speed on the additive manufacturing of AA2011 parts using friction stir deposition. Materials 2021, 14, 6396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, M.; Lu, Y.; Du, W. Deposition geometrical characteristics of wire arc additive-manufactured AA2219 aluminium alloy with cold metal transfer pulse advance arc mode. Int. J. Adv. Manuf. Technol. 2022, 123, 3807–3818. [Google Scholar] [CrossRef]
- Sojiphan, K. Effects of Very High Power Ultrasonic Additive Manufacturing Process Parameters on Hardness, Microstructure, and Texture of Aluminum 3003-H18 Alloy. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2015. Available online: https://search.proquest.com/openview/681ee61bf5f75f7df418ae95fcc330c4/1?pq-origsite=gscholar&cbl=18750 (accessed on 14 June 2024).
- Pan, Q.; Kapoor, M.; Mileski, S.; Li, D.; Yang, J.; Zheng, Y.; Carsley, J.; Lou, X. Phase transformation and microstructural evolution in Al-Mn-Fe-Si 3104 aluminum alloy made by laser directed energy deposition. Addit. Manuf. 2023, 77, 103797. [Google Scholar] [CrossRef]
- Pan, Q.; Kapoor, M.; Mileski, S.; Carsley, J.; Lou, X. Technical basis of using laser direct energy deposition as a high-throughput combinatorial method for DC-cast Al-Mn alloy development. Mater. Des. 2021, 212, 110290. [Google Scholar] [CrossRef]
- Løvøy, M. Microstructural Analysis of Additive Manufactured Walls of AA5083 and AA4020 Alloys Produced by Cold Metal Transfer. Master’s Thesis, University of Oslo, Oslo, Norway, 2018. Available online: https://www.duo.uio.no/handle/10852/63568 (accessed on 14 June 2024).
- Singh, A. Additive Manufacturing of Al 4047 and Al 7050 Alloys Using Direct Laser Metal Deposition Process. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 2017. Available online: https://search.proquest.com/openview/be626188df4a687883ee1b57a0659f22/1?pq-origsite=gscholar&cbl=18750 (accessed on 14 June 2024).
- Rousseau, J.-N.; Bois-Brochu, A.; Giguère, N.; Blais, C. Study of ultrasonic additive manufacturing and its utilization for the production of aluminum components made of alloys of the AA5XXX series. Int. J. Adv. Manuf. Technol. 2022, 119, 7983–8002. [Google Scholar] [CrossRef]
- Horgar, A.; Fostervoll, H.; Nyhus, B.; Ren, X.; Eriksson, M.; Akselsen, O.M. Additive manufacturing using WAAM with AA5183 wire. J. Mater. Process. Technol. 2018, 259, 68–74. [Google Scholar] [CrossRef]
- Bock, F.E.; Froend, M.; Herrnring, J.; Enz, J.; Kashaev, N.; Klusemann, B. Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2018; Available online: https://pubs.aip.org/aip/acp/article-abstract/1960/1/140004/887110 (accessed on 14 June 2024).
- Froend, M.; Ventzke, V.; Riekehr, S.; Kashaev, N.; Klusemann, B.; Enz, J. Microstructure and hardness evolution of laser metal deposited AA5087 wall-structures. Procedia CIRP 2018, 74, 131–135. [Google Scholar] [CrossRef]
- Svetlizky, D.; Zheng, B.; Buta, T.; Zhou, Y.; Golan, O.; Breiman, U.; Haj-Ali, R.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition of Al 5xxx alloy using Laser Engineered Net Shaping (LENS®). Mater. Des. 2020, 192, 108763. [Google Scholar] [CrossRef]
- Mehta, A.; Zhou, L.; Huynh, T.; Park, S.; Hyer, H.; Song, S.; Bai, Y.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit. Manuf. 2021, 41, 101966. [Google Scholar] [CrossRef]
- Loh, L.-E.; Chua, C.-K.; Yeong, W.-Y.; Song, J.; Mapar, M.; Sing, S.-L.; Liu, Z.-H.; Zhang, D.-Q. Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Transf. 2015, 80, 288–300. [Google Scholar] [CrossRef]
- Maamoun, A.; Xue, Y.; Elbestawi, M.; Veldhuis, S. The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys. Materials 2019, 12, 12. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Mertens, R.; Vanmeensel, K.; Vleugels, J.; Humbeeck, J.V.; Kruth, J.-P. In situ alloying and reinforcing of Al6061 during selective laser melting. Procedia CIRP 2018, 74, 39–43. [Google Scholar] [CrossRef]
- Jeon, S.; Park, S.; Song, Y.; Park, J.; Park, H.; Lee, B.; Choi, H. Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process. J. Powder Mater. 2023, 30, 463–469. [Google Scholar] [CrossRef]
- de la Vega, F.M. Optimization of Thermal Cycles for a Novel Al 6061 Alloy Produced by Binder Jetting. Master’s Thesis, Polytechnic University of Milan, Milan, Italy, 2023. Available online: https://www.politesi.polimi.it/handle/10589/214304 (accessed on 25 July 2024).
- Patel, M.; Chaudhary, B.; Murugesan, J.; Jain, N.K. Additive Manufacturing of AA6063-ZrO2 Composite Using Friction Stir Surface Additive Manufacturing. Trans. Indian Inst. Met. 2023, 76, 581–588. [Google Scholar] [CrossRef]
- Chen, X.; Duan, X.; Jiang, G. Numerical investigation of Transient Temperature Field on the Selective Laser Melting process with Al6063. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 032070. [Google Scholar] [CrossRef]
- Li, F.; Zhang, T.; Wu, Y.; Chen, C.; Zhou, K. Microstructure, mechanical properties, and crack formation of aluminum alloy 6063 produced via laser powder bed fusion. J. Mater. Sci. 2022, 57, 9631–9645. [Google Scholar] [CrossRef]
- Blindheim, J.; Grong, Ø.; Welo, T.; Steinert, M. On the mechanical integrity of AA6082 3D structures deposited by hybrid metal extrusion & bonding additive manufacturing. J. Mater. Process. Technol. 2020, 282, 116684. [Google Scholar]
- Yoder, J.K.; Griffiths, R.J.; Hang, Z.Y. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties. Mater. Des. 2021, 198, 109288. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Mertens, R.; Vrancken, B.; Wang, X.; Van Hooreweder, B.; Kruth, J.-P.; Van Humbeeck, J. Changing the alloy composition of Al7075 for better processability by selective laser melting. J. Mater. Process. Technol. 2016, 238, 437–445. [Google Scholar] [CrossRef]
- Tan, Q.; Fan, Z.; Tang, X.; Yin, Y.; Li, G.; Huang, D.; Zhang, J.; Liu, Y.; Wang, F.; Wu, T.; et al. A novel strategy to additively manufacture 7075 aluminium alloy with selective laser melting. Mater. Sci. Eng. A 2021, 821, 141638. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Du, W.; Bai, P.; Wu, X. Numerical simulation and experimental study of the 7075 aluminum alloy during selective laser melting. Opt. Laser Technol. 2023, 167, 109814. [Google Scholar] [CrossRef]
- Xu, H.; Ren, W.; Ma, C.; Xu, L.; Han, Y.; Zhao, L.; Hao, K. Laser-directed energy deposition of ZrH2 particles reinforced Al7075 alloy: Cracks elimination and strength enhancement. Addit. Manuf. 2023, 78, 103877. [Google Scholar] [CrossRef]
- Qi, T.; Zhu, H.; Zhang, H.; Yin, J.; Ke, L.; Zeng, X. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater. Des. 2017, 135, 257–266. [Google Scholar] [CrossRef]
- Singh, A.; Ramakrishnan, A.; Baker, D.; Biswas, A.; Dinda, G.P. Laser metal deposition of nickel coated Al 7050 alloy. J. Alloys Compd. 2017, 719, 151–158. [Google Scholar] [CrossRef]
- Davoren, B.; Sacks, N.; Theron, M. Microstructure characterization of WC-9.2wt%Monel 400 fabricated using laser engineered net shaping. Prog. Addit. Manuf. 2021, 6, 431–443. [Google Scholar] [CrossRef]
- Anderson, R.; Terrell, J.; Schneider, J.; Thompson, S.; Gradl, P. Characteristics of Bi-metallic Interfaces Formed During Direct Energy Deposition Additive Manufacturing Processing. Met. Mater. Trans. B 2019, 50, 1921–1930. [Google Scholar] [CrossRef]
- Mani, M.; Mohanraj, M.; Karthikeyan, A.G.; Kalaiselvan, K. Investigations of performance characteristics on direct metal laser sintered MONEL K-500 superalloy. Mater. Sci. Technol. 2023, 39, 3111–3122. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Kandukuri, S.Y.; Zhou, K. Additive Manufacturing of Monel K-500 via Directed Energy Deposition for Pressure Vessel Applications. In Proceedings of the Pressure Vessels and Piping Conference, Las Vegas, NV, USA, 17–22 July 2022; Vol. 86175; p. V04AT06A016. Available online: https://asmedigitalcollection.asme.org/PVP/proceedings-abstract/PVP2022/V04AT06A016/1149864 (accessed on 14 June 2024).
- Mani, H.T.; Savarimuthu, J.; Varma, S.R.; Muraleedharan, M.B.; Suni, N.K.; Nandakumar, Y. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy. Int. J. Mater. Res. 2023, 114, 844–854. [Google Scholar] [CrossRef]
- Poudel, A.; Gradl, P.R.; Shao, S.; Shamsaei, N. Tensile deformation behavior of laser powder direct energy deposited Inconel 625: Cryogenic to elevated temperatures. Mater. Sci. Eng. A 2024, 889, 145826. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, H.; Shang, S.-L.; Liu, Z.-K.; Beese, A.M. Effect of heat treatment on functionally graded 304L stainless steel to Inconel 625 fabricated by directed energy deposition. Materialia 2024, 34, 102067. [Google Scholar] [CrossRef]
- Marchese, G.; Colera, X.G.; Calignano, F.; Lorusso, M.; Biamino, S.; Minetola, P.; Manfredi, D. Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition. Adv. Eng. Mater. 2017, 19, 1600635. [Google Scholar] [CrossRef]
- Li, S.; Wei, Q.; Shi, Y.; Zhu, Z.; Zhang, D. Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting. J. Mater. Sci. Technol. 2015, 31, 946–952. [Google Scholar] [CrossRef]
- Murr, L.E.; Martinez, E.; Gaytan, S.M.; Ramirez, D.A.; Machado, B.I.; Shindo, P.W.; Martinez, J.L.; Medina, F.; Wooten, J.; Ciscel, D.; et al. Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting. Met. Mater. Trans. A 2011, 42, 3491–3508. [Google Scholar] [CrossRef]
- Koike, R.; Misawa, T.; Aoyama, T.; Kondo, M. Controlling metal structure with remelting process in direct energy deposition of Inconel 625. CIRP Ann. 2018, 67, 237–240. [Google Scholar] [CrossRef]
- Koike, R.; Misawa, T.; Kakinuma, Y.; Oda, Y. Basic Study on Remelting Process to Enhance Density of Inconel 625 in Direct Energy Deposition. Int. J. Autom. Technol. 2018, 12, 424–433. [Google Scholar] [CrossRef]
- Jiang, R.; Monteil, L.; Kimes, K.; Mostafaei, A.; Chmielus, M. Influence of powder type and binder saturation on binder jet 3D–printed and sintered Inconel 625 samples. Int. J. Adv. Manuf. Technol. 2021, 116, 3827–3838. [Google Scholar] [CrossRef]
- Mostafaei, A.; Neelapu, S.H.V.R.; Kisailus, C.; Nath, L.M.; Jacobs, T.D.B.; Chmielus, M. Characterizing surface finish and fatigue behavior in binder-jet 3D-printed nickel-based superalloy 625. Addit. Manuf. 2018, 24, 200–209. [Google Scholar] [CrossRef]
- Mostafaei, A. Powder Bed Binder Jet 3D Printing of Alloy 625: Microstructural Evolution, Densification Kinetics and Mechanical Properties. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2018. Available online: http://d-scholarship.pitt.edu/34920/ (accessed on 25 July 2024).
- Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012, 60, 2229–2239. [Google Scholar] [CrossRef]
- Li, X.; Shi, J.J.; Wang, C.H.; Cao, G.H.; Russell, A.M.; Zhou, Z.J.; Li, C.P.; Chen, G.F. Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting. J. Alloys Compd. 2018, 764, 639–649. [Google Scholar] [CrossRef]
- Chlebus, E.; Gruber, K.; Kuźnicka, B.; Kurzac, J.; Kurzynowski, T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 2015, 639, 647–655. [Google Scholar] [CrossRef]
- Sames, W.J.; Unocic, K.A.; Dehoff, R.R.; Lolla, T.; Babu, S.S. Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. J. Mater. Res. 2014, 29, 1920–1930. [Google Scholar] [CrossRef]
- Kirka, M.M.; Medina, F.; Dehoff, R.; Okello, A. Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process. Mater. Sci. Eng. A 2017, 680, 338–346. [Google Scholar] [CrossRef]
- Helmer, H.; Bauereiß, A.; Singer, R.F.; Körner, C. Grain structure evolution in Inconel 718 during selective electron beam melting. Mater. Sci. Eng. A 2016, 668, 180–187. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Xu, S.; Liu, B.; Sui, Q.; Zhao, F.; Gong, L.; Liu, J. Influence of powder characteristics on microstructure and mechanical properties of Inconel 718 superalloy manufactured by direct energy deposition. Appl. Surf. Sci. 2022, 583, 152545. [Google Scholar] [CrossRef]
- Gullipalli, C.; Thawari, N.; Chandak, A.; Gupta, T. Statistical Analysis of Clad Geometry in Direct Energy Deposition of Inconel 718 Single Tracks. J. Mater. Eng. Perform. 2022, 31, 6922–6932. [Google Scholar] [CrossRef]
- Nandwana, P.; Elliott, A.M.; Siddel, D.; Merriman, A.; Peter, W.H.; Babu, S.S. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges. Curr. Opin. Solid State Mater. Sci. 2017, 21, 207–218. [Google Scholar] [CrossRef]
- Eriksson, T. Process Optimization and Characterization of Inconel 718 Manufactured by Metal Binder Jetting. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2021. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87168 (accessed on 25 July 2024).
- Rajkumar, V.; Vishnukumar, M.; Sowrirajan, M.; Kannan, A.R. Microstructure, mechanical properties and corrosion behaviour of Incoloy 825 manufactured using wire arc additive manufacturing. Vacuum 2022, 203, 111324. [Google Scholar] [CrossRef]
- Yan, D. Effect of Laser Powder Bed Fusion Parameters and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of C22 Alloy. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2021. [Google Scholar]
- Montealegre-Meléndez, I.; Pérez-Soriano, E.M.; Ariza, E.; Neubauer, E.; Kitzmantel, M.; Arévalo, C. Manufacturing via Plasma Metal Deposition of Hastelloy C-22 Specimens Made from Particles with Different Granulometries. Machines 2024, 12, 253. [Google Scholar] [CrossRef]
- Madesh, R.; Kumar, K.G. Microstructural and Mechanical Properties of Nickel-Based Superalloy Fabricated by Pulsed-Mode Arc-Based Additive Manufacturing Technology. Met. Mater. Int. 2024. [Google Scholar] [CrossRef]
- Obidigbo, C.; Tatman, E.-P.; Gockel, J. Processing parameter and transient effects on melt pool geometry in additive manufacturing of Invar 36. Int. J. Adv. Manuf. Technol. 2019, 104, 3139–3146. [Google Scholar] [CrossRef]
- Qiu, C.; Adkins, N.J.E.; Attallah, M.M. Selective laser melting of Invar 36: Microstructure and properties. Acta Mater. 2016, 103, 382–395. [Google Scholar] [CrossRef]
- Wei, K.; Yang, Q.; Ling, B.; Yang, X.; Xie, H.; Qu, Z.; Fang, D. Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 772, 138799. [Google Scholar] [CrossRef]
- Wegener, T.; Brenne, F.; Fischer, A.; Möller, T.; Hauck, C.; Auernhammer, S.; Niendorf, T. On the structural integrity of Fe-36Ni Invar alloy processed by selective laser melting. Addit. Manuf. 2021, 37, 101603. [Google Scholar] [CrossRef]
- Park, B.S.; Baik, H.K. Refining of Invar and Permalloy Fe-Ni Alloys by <Ar/Ar-H2 Plasma and Electron Beam Melting. J. Korea Foundry Soc. 1995, 15, 175–183. [Google Scholar]
- Lores, A.; Azurmendi, N.; Agote, I.; Espinosa, E.; García-Blanco, M.B. A study of parameter and post-processing effects on surface quality improvement of Binder Jet 3D-printed Invar36 alloy parts. Prog. Addit. Manuf. 2022, 7, 917–930. [Google Scholar] [CrossRef]
- Azurmendi, N. Binder Jetting of High Dimensional Stability Alloy for Space Applications. Available online: https://www.infona.pl/resource/bwmeta1.element.ID-e6a5a9d2-a2db-4f12-b165-d5438a3e1491 (accessed on 25 July 2024).
- Huang, G.; He, G.; Gong, X.; He, Y.; Liu, Y.; Huang, K. Additive manufacturing of Invar 36 alloy. J. Mater. Res. Technol. 2024, 30, 1241–1268. [Google Scholar] [CrossRef]
- Walker, J.; Andani, M.T.; Haberland, C.; Elahinia, M. Additive manufacturing of Nitinol shape memory alloys to overcome challenges in conventional Nitinol fabrication. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; Volume 46438, p. V02AT02A037. Available online: https://asmedigitalcollection.asme.org/IMECE/proceedings-abstract/IMECE2014/262362 (accessed on 14 June 2024).
- Shishkovsky, I.; Yadroitsev, I.; Smurov, I. Direct Selective Laser Melting of Nitinol Powder. Phys. Procedia 2012, 39, 447–454. [Google Scholar] [CrossRef]
- Chekotu, J.C.; Groarke, R.; O’Toole, K.; Brabazon, D. Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production. Materials 2019, 12, 809. [Google Scholar] [CrossRef]
- Walker, J.; Elahinia, M.; Haberland, C. An Investigation of Process Parameters on Selective Laser Melting of Nitinol. In Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, USA, 16–18 September 2013. [Google Scholar] [CrossRef]
- Hayat, M.D.; Chen, G.; Liu, N.; Khan, S.; Tang, H.P.; Cao, P. Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting. Key Eng. Mater. 2018, 770, 148–154. [Google Scholar] [CrossRef]
- Fink, A.; Fu, Z.; Körner, C. Functional properties and shape memory effect of Nitinol manufactured via electron beam powder bed fusion. Materialia 2023, 30, 101823. [Google Scholar] [CrossRef]
- Zhou, Q.; Hayat, M.D.; Chen, G.; Cai, S.; Qu, X.; Tang, H.; Cao, P. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties. Mater. Sci. Eng. A 2019, 744, 290–298. [Google Scholar] [CrossRef]
- Bagheri, A.; Yadollahi, A.; Mahtabi, M.J.; Paudel, Y.; Vance, E.; Shamsaei, N.; Horstemeyer, M.F. Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED). J. Mater. Eng. Perform. 2022, 31, 4761–4775. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Kumar, C.P.; Ganesh, S.S.S.; Venkatesh, M.; Radhika, N.; Vignesh, M.; Pazhani, A. Possibilities, performance and challenges of nitinol alloy fabricated by Directed Energy Deposition and Powder Bed Fusion for biomedical implants. J. Manuf. Process. 2023, 102, 885–909. [Google Scholar] [CrossRef]
- Sharma, V.M.; Svetlizky, D.; Das, M.; Tevet, O.; Krämer, M.; Kim, S.; Gault, B.; Eliaz, N. Microstructure and mechanical properties of bulk NiTi shape memory alloy fabricated using directed energy deposition. Addit. Manuf. 2024, 86, 104224. [Google Scholar] [CrossRef]
- Sazerat, M.; Nait-Ali, A.; Cervellon, A.; Lopez-Galilea, I.; Burlot, G.; Gillet, S.; Eyidi, D.; Joulain, A.; Villechaise, P.; Weber, S. High temperature microstructure stability of Waspaloy produced by Wire Arc Additive Manufacturing. J. Alloys Compd. 2023, 966, 171626. [Google Scholar] [CrossRef]
- Mumtaz, K.A.; Erasenthiran, P.; Hopkinson, N. High density selective laser melting of Waspaloy®. J. Mater. Process. Technol. 2008, 195, 77–87. [Google Scholar] [CrossRef]
- Jedynak, A.; Sviridov, A.; Bambach, M.; Beckers, D.; Graf, G. On the Potential of Using Selective Laser Melting for the Fast Development of Forging Alloys at the Example of Waspaloy. Procedia Manuf. 2020, 47, 1149–1153. [Google Scholar] [CrossRef]
- Mumtaz, K.A.; Hopkinson, N. Laser melting functionally graded composition of Waspaloy® and Zirconia powders. J. Mater. Sci. 2007, 42, 7647–7656. [Google Scholar] [CrossRef]
- Lövhall, J. Process Parameter Optimisation for Waspaloy Using Laser-Directed Energy Deposition with Powder. Bachelor’s Thesis, University West, Trollhättan, Sweden, 2024. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-21294 (accessed on 25 July 2024).
- Zhou, X.; Li, K.; Zhang, D.; Liu, X.; Ma, J.; Liu, W.; Shen, Z. Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. 2015, 631, 153–164. [Google Scholar] [CrossRef]
- Song, C.; Zhang, M.; Yang, Y.; Wang, D.; Jia-kuo, Y. Morphology and properties of CoCrMo parts fabricated by selective laser melting. Mater. Sci. Eng. A 2018, 713, 206–213. [Google Scholar] [CrossRef]
- Monroy, K.; Delgado, J.; Ciurana, J. Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process. Procedia Eng. 2013, 63, 361–369. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Song, C.; Bai, Y.; Xiao, Z. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J. Alloys Compd. 2018, 750, 878–886. [Google Scholar] [CrossRef]
- Gong, X.; Li, Y.; Nie, Y.; Huang, Z.; Liu, F.; Huang, L.; Jiang, L.; Mei, H. Corrosion behaviour of CoCrMo alloy fabricated by electron beam melting. Corros. Sci. 2018, 139, 68–75. [Google Scholar] [CrossRef]
- Vutova, K.; Stefanova, V.; Markov, M.; Vassileva, V. Study on Hardness of Heat-Treated CoCrMo Alloy Recycled by Electron Beam Melting. Materials 2023, 16, 2634. [Google Scholar] [CrossRef]
- Petit, C.; Maire, E.; Meille, S.; Adrien, J.; Kurosu, S.; Chiba, A. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling. Mater. Charact. 2016, 116, 48–54. [Google Scholar] [CrossRef]
- Vutova, K.; Stefanova, V.; Vassileva, V.; Atanasova-Vladimirova, S. Recycling of Technogenic CoCrMo Alloy by Electron Beam Melting. Materials 2022, 15, 4168. [Google Scholar] [CrossRef]
- Liu, M.; Kuttolamadom, M. Characterization of Co-Cr-Mo Alloys Manufacturing via Directed Energy Deposition. In Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, Online, 21–25 June 2021. [Google Scholar] [CrossRef]
- Khademitab, M.; de Vecchis, P.R.; Staszel, P.; Vaicik, M.K.; Chmielus, M.; Mostafaei, A. Structure-property relationships of differently heat-treated binder jet printed Co-Cr-Mo biomaterial. Mater. Today Commun. 2024, 38, 107716. [Google Scholar] [CrossRef]
- Onler, R.; Koca, A.S.; Kirim, B.; Soylemez, E. Multi-objective optimization of binder jet additive manufacturing of Co-Cr-Mo using machine learning. Int. J. Adv. Manuf. Technol. 2022, 119, 1091–1108. [Google Scholar] [CrossRef]
- Lee, H.W.; Jung, K.-H.; Hwang, S.-K.; Kang, S.-H.; Kim, D.-K. Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting. Mater. Sci. Eng. A 2019, 749, 65–73. [Google Scholar] [CrossRef]
- Zou, S.; Zhao, Z.; Xu, W.; Ni, X.; Zhang, L.; Wu, W.; Kong, D.; He, X.; Wang, L.; Dong, C. Effects of scanning speeds on the wear behavior of CoCrW alloy fabricated by selective laser melting. Opt. Laser Technol. 2022, 147, 107652. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Gan, Y.; Li, J.; Zhao, C.; Zhuo, D.; Lin, J. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater. Sci. Eng. C 2015, 49, 517–525. [Google Scholar] [CrossRef]
- Jo, Y.-K.; Song, D.-B.; Choi, J.-S.; Suh, J.; Kahhal, P.; Park, S.-H. Higher wear-resistant surfacing at high temperatures using a hybrid cladding process. Mater. Des. 2023, 225, 111553. [Google Scholar] [CrossRef]
- Moradi, M.; Ashoori, A.; Hasani, A. Additive manufacturing of stellite 6 superalloy by direct laser metal deposition–Part 1: Effects of laser power and focal plane position. Opt. Laser Technol. 2020, 131, 106328. [Google Scholar] [CrossRef]
- Bakhshayesh, M.M.; Khodabakhshi, F.; Farshidianfar, M.H.; Nagy, Š.; Mohammadi, M.; Wilde, G. Additive manufacturing of Stellite 6 alloy by laser-directed energy deposition: Engineering the crystallographic texture. Mater. Charact. 2024, 207, 113511. [Google Scholar] [CrossRef]
- Mariani, M.; Lecis, N.; Mostafaei, A. Binder Jetting-based Metal Printing. In Solid-State Metal Additive Manufacturing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 339–359. ISBN 978-3-527-83935-3. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527839353.ch15 (accessed on 25 July 2024).
- Mostafaei, A.; Rodriguez De Vecchis, P.; Buckenmeyer, M.J.; Wasule, S.R.; Brown, B.N.; Chmielus, M. Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6. Mater. Sci. Eng. C 2019, 102, 276–288. [Google Scholar] [CrossRef]
- Freiße, H.; Khazan, P.; Stroth, M.; Köhler, H. Properties of large 3D parts made From Stellite 21 through direct powder deposition. In Proceedings of the Laser in Manufacturing Conference, München, Germany, 22–25 June 2015; Available online: https://www.wlt.de/lim/Proceedings/Stick/PDF/Contribution310_final.pdf (accessed on 14 June 2024).
- Smoqi, Z.; Toddy, J.; Halliday, H.; Shield, J.E.; Rao, P. Process-structure relationship in the directed energy deposition of cobalt-chromium alloy (Stellite 21) coatings. Mater. Des. 2021, 197, 109229. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, M.; Chen, C.; Wang, X.; Zou, T.; Hu, Z. Effect of Heat Treatment on Microstructure and Mechanical Properties of Stellite 12 Fabricated by Laser Additive Manufacturing. J. Mater. Eng. Perform. 2017, 26, 5404–5413. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; Zhang, C.; Lu, J.; Ouyang, N.; Shen, Q.; Huang, A.; Chen, F. Microstructure and mechanical properties of Haynes 188 alloy manufactured by laser powder bed fusion. Mater. Charact. 2024, 211, 113880. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; Zhang, C.; Lu, J.; Ouyang, N.; Shen, Q.; Zhu, Y.; Huang, A.; Chen, F. Tailoring microstructure and twin-induced work hardening of a laser powder bed fusion manufactured Haynes 188 alloy. Mater. Sci. Eng. A 2024, 891, 145925. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; Zhang, C.; Lu, J.; Ouyang, N.; Shen, Q.; Chen, F. Twin-Induced Tensile Strengthening in a Laser Powder Bed Fusion Manufactured Haynes 188 Alloy by Heat Treatment. 2022. Available online: https://papers.ssrn.com/abstract=4299736 (accessed on 25 July 2024).
- Yang, B.; Shang, Z.; Ding, J.; Lopez, J.; Jarosinski, W.; Sun, T.; Richter, N.; Zhang, Y.; Wang, H.; Zhang, X. Investigation of strengthening mechanisms in an additively manufactured Haynes 230 alloy. Acta Mater. 2022, 222, 117404. [Google Scholar] [CrossRef]
- He, J.; Wang, R.; Li, N.; Xiao, Z.; Gu, J.; Yu, H.; Bi, Z.; Liu, W.; Song, M. Unravelling the origin of multiple cracking in an additively manufactured Haynes 230. Mater. Res. Lett. 2023, 11, 281–288. [Google Scholar] [CrossRef]
- Paul, M.; Ghiaasiaan, R.; Gradl, P.; Caron, J.; Wang, P.; Shao, S.; Shamsaei, N. Tensile and fatigue behaviors of newly developed HAYNES® 233 alloy: Additively manufactured vs. wrought. Mater. Des. 2024, 244, 113165. [Google Scholar] [CrossRef]
- Magnin, C.; Islam, Z.; Elbakhshwan, M.; Brittan, A.; Thoma, D.J.; Anderson, M.H. The performance of additively manufactured Haynes 282 in supercritical CO2. Mater. Sci. Eng. A 2022, 841, 143007. [Google Scholar] [CrossRef]
- Otto, R.; Brøtan, V.; Carvalho, P.A.; Reiersen, M.; Graff, J.S.; Sunding, M.F.; Berg, O.Å.; Diplas, S.; Azar, A.S. Roadmap for additive manufacturing of HAYNES® 282® superalloy by laser beam powder bed fusion (PBF-LB) technology. Mater. Des. 2021, 204, 109656. [Google Scholar] [CrossRef]
- Boswell, J.; Jones, J.; Barnard, N.; Clark, D.; Whittaker, M.; Lancaster, R. The effects of energy density and heat treatment on the microstructure and mechanical properties of laser additive manufactured Haynes 282. Mater. Des. 2021, 205, 109725. [Google Scholar] [CrossRef]
- Unocic, K.A.; Kirka, M.M.; Cakmak, E.; Greeley, D.; Okello, A.O.; Dryepondt, S. Evaluation of additive electron beam melting of haynes 282 alloy. Mater. Sci. Eng. A 2020, 772, 138607. [Google Scholar] [CrossRef]
- Fernandez-Zelaia, P.; Rojas, J.O.; Ferguson, J.; Dryepondt, S.; Kirka, M.M. Fatigue crack growth resistance of a mesoscale composite microstructure Haynes 282 fabricated via electron beam melting additive manufacturing. J. Mater. Sci. 2022, 57, 9866–9884. [Google Scholar] [CrossRef]
- Cloots, M.; Kunze, K.; Uggowitzer, P.J.; Wegener, K. Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy Mar-M509 produced by selective laser melting. Mater. Sci. Eng. A 2016, 658, 68–76. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Zhao, R.; Liu, L.; Shuai, S.; Hu, T.; Wang, J.; Ren, Z. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy. Acta Metall. Sin. (Engl. Lett.) 2022, 35, 501–516. [Google Scholar] [CrossRef]
- Ferreri, N.C.; Ghorbanpour, S.; Bhowmik, S.; Lussier, R.; Bicknell, J.; Patterson, B.M.; Knezevic, M. Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion. Int. J. Plast. 2019, 121, 116–133. [Google Scholar] [CrossRef]
- Ghorbanpour, S.; Bicknell, J.; Knezevic, M. Fatigue strength of additive manufactured Mar-M-509 superalloy. Mater. Sci. Eng. A 2022, 840, 142913. [Google Scholar] [CrossRef]
- Ikeshoji, T.T.; Nakamura, K.; Yonehara, M.; Imai, K.; Kyogoku, H. Selective Laser Melting of Pure Copper. JOM 2018, 70, 396–400. [Google Scholar] [CrossRef]
- Jadhav, S.D.; Dadbakhsh, S.; Goossens, L.; Kruth, J.-P.; Van Humbeeck, J.; Vanmeensel, K. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 2019, 270, 47–58. [Google Scholar] [CrossRef]
- Lykov, P.A.; Safonov, E.V.; Akhmedianov, A.M. Selective Laser Melting of Copper. Mater. Sci. Forum 2016, 843, 284–288. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Murr, L.E.; Li, S.J.; Tian, Y.X.; Martinez, E.; Martinez, J.L.; Machado, B.I.; Gaytan, S.M.; Medina, F.; Wicker, R.B. Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 2011, 528, 5379–5386. [Google Scholar] [CrossRef]
- Guschlbauer, R.; Momeni, S.; Osmanlic, F.; Körner, C. Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Mater. Charact. 2018, 143, 163–170. [Google Scholar] [CrossRef]
- Megahed, S.; Fischer, F.; Nell, M.; Forsmark, J.; Leonardi, F.; Zhu, L.; Hameyer, K.; Schleifenbaum, J.H. Manufacturing of Pure Copper with Electron Beam Melting and the Effect of Thermal and Abrasive Post-Processing on Microstructure and Electric Conductivity. Materials 2023, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting. Procedia Manuf. 2017, 10, 935–944. [Google Scholar] [CrossRef]
- Yegyan Kumar, A.; Wang, J.; Bai, Y.; Huxtable, S.T.; Williams, C.B. Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing. Mater. Des. 2019, 182, 108001. [Google Scholar] [CrossRef]
- Li, M.; Huang, J.; Fang, A.; Mansoor, B.; Pei, Z.; Ma, C. Binder jetting additive manufacturing of copper/diamond composites: An experimental study. J. Manuf. Process. 2021, 70, 205–213. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, Q.; Andani, M.T.; Liu, X.; Zhang, H.; Wang, W.; Li, Y.; Yang, Y. Effects of build orientation and heat treatment on microstructure and properties of Cu–Cr–Zr alloy manufactured by laser powder bed fusion. Mater. Chem. Phys. 2023, 298, 127477. [Google Scholar] [CrossRef]
- Hu, Z.; Du, Z.; Yang, Z.; Yu, L.; Ma, Z. Preparation of Cu–Cr–Zr alloy by selective laser melting: Role of scanning parameters on densification, microstructure and mechanical properties. Mater. Sci. Eng. A 2022, 836, 142740. [Google Scholar] [CrossRef]
- Sun, F.; Liu, P.; Chen, X.; Zhou, H.; Guan, P.; Zhu, B. Materials Mechanical Properties of High-Strength Cu–Cr–Zr Alloy Fabricated by Selective Laser Melting. Materials 2020, 13, 5028. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, D.Z.; Liu, F.; Jiang, J.; Zhao, M.; Zhang, T. Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption. Mater. Des. 2020, 187, 108406. [Google Scholar] [CrossRef]
- Ordás, N.; Portolés, L.; Azpeleta, M.; Gómez, A.; Blasco, J.R.; Martinez, M.; Ureña, J.; Iturriza, I. Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF). J. Nucl. Mater. 2021, 548, 152841. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Hu, X.; Shi, H.; Li, X.; Liu, W.; Gan, W.; Xu, C.; Wang, X. Microstructure and mechanical properties of Cu-Cr-Zr alloy prepared by electron beam additive manufacturing and laser-MIG hybrid welding. J. Manuf. Process. 2024, 117, 24–39. [Google Scholar] [CrossRef]
- Zardoshtian, A.; Ansari, M.; Esmaeilzadeh, R.; Keshavarzkermani, A.; Jahed, H.; Toyserkani, E. Laser-directed energy deposition of CuCrZr alloy: From statistical process parameter optimization to microstructural analysis. Int. J. Adv. Manuf. Technol. 2023, 126, 4407–4418. [Google Scholar] [CrossRef]
- Zardoshtian, A.; Ansari, M.; Esmaeilzadeh, R.; Keshavarzkermai, A.; Jahed, H.; Toyserkani, E. On the Process Optimization, Microstructure Evolution, and Mechanical Properties of Cucrzr Produced by Laser Directed Energy Deposition. 2022. Available online: https://papers.ssrn.com/abstract=4265285 (accessed on 25 July 2024).
- Jeyaprakash, N.; Kumar, M.S.; Yang, C.-H. Enhanced nano-level mechanical responses on additively manufactured Cu-Cr-Zr copper alloy containing Cu2O nano precipitates. J. Alloys Compd. 2023, 930, 167425. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, K.; Ren, Z.; Zhang, D.Z.; Tao, G.; Xu, H. Selective laser melting of Cu–Cr–Zr copper alloy: Parameter optimization, microstructure and mechanical properties. J. Alloys Compd. 2020, 828, 154350. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, D.Z.; Fu, G.; Jiang, J.; Zhao, M. High-fidelity modelling of selective laser melting copper alloy: Laser reflection behavior and thermal-fluid dynamics. Mater. Des. 2021, 207, 109857. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, H.; Zhang, L.; Zhang, W.; Yang, H.; Zeng, X. Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting. Mater. Lett. 2019, 237, 306–309. [Google Scholar] [CrossRef]
- Uchida, S.; Kimura, T.; Nakamoto, T.; Ozaki, T.; Miki, T.; Takemura, M.; Oka, Y.; Tsubota, R. Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting. Mater. Des. 2019, 175, 107815. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, S.; Zhao, Y.; Qu, X. Microstructure and properties of CuCr alloy manufactured by selective laser melting. J. Alloys Compd. 2019, 786, 189–197. [Google Scholar] [CrossRef]
- Momeni, S.; Guschlbauer, R.; Osmanlic, F.; Körner, C. Selective electron beam melting of a copper-chrome powder mixture. Mater. Lett. 2018, 223, 250–252. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Zhou, H.; Ye, S.; Zhang, Y.; Liu, T.; Jiang, D.; Chen, L.; Zhou, R. Effect of Process Parameters on the Microstructure and Properties of Cu–Cr–Nb–Ti Alloy Manufactured by Selective Laser Melting. Materials 2023, 16, 2912. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Liu, X.; Xie, H.; Guan, W.; Gao, M.; Li, S.; Wu, Y.; Xiao, X.; Ling, G.; Bao, G.; et al. Laser additive manufacturing of Cu–Cr–Nb alloys by using elemental powder. J. Mater. Sci. 2024, 59, 6965–6985. [Google Scholar] [CrossRef]
- Wilms, M.B.; Rittinghaus, S.-K. Laser additive manufacturing of oxide dispersion-strengthened copper–chromium–niobium alloys. J. Manuf. Mater. Process. 2022, 6, 102. [Google Scholar] [CrossRef]
- Kini, A.R. Laser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu-Cr-Nb Alloys. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2019. Available online: http://publications.rwth-aachen.de/record/765327/files/765327.pdf (accessed on 25 July 2024).
- Demeneghi, G.; Barnes, B.; Gradl, P.; Ellis, D.; Mayeur, J.R.; Hazeli, K. Directed energy deposition GRCop-42 copper alloy: Characterization and size effects. Mater. Des. 2022, 222, 111035. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J.; Zhao, C.; Li, C.; Wang, H. Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy. Mater. Charact. 2020, 167, 110489. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, D.Z.; Jiang, J.; Fu, G.; Zhang, P. Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze. Mater. Sci. Eng. A 2018, 721, 125–134. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, D.Z.; Wei, P.; Zhang, K. Manufacturing Feasibility and Forming Properties of Cu-4Sn in Selective Laser Melting. Materials 2017, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, S.; Jayashree, P.; Rita, D.A.; Piras, G.; Scheider, D.; Chemello, M.; Benedetti, M. Wear and material characterization of CuSn10 additively manufactured using directed energy deposition. Addit. Manuf. Lett. 2023, 6, 100136. [Google Scholar] [CrossRef]
- Jin, K.; Li, G.; Wei, B.; Chen, R.; Chen, P.; Cheng, J. Preparation of Bronze (CuSn10) Parts by Material Extrusion Process Using Paraffin-Based Binder. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Wang, X.; Wang, P.; Zhang, X.; Gan, X.; Zhou, K. Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder. Int. J. Adv. Manuf. Technol. 2018, 96, 4223–4230. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Li, D.; Kollo, L.; Luo, Z.; Zhang, W.; Prashanth, K.G. Selective laser melting of Cu–Ni–Sn: A comprehensive study on the microstructure, mechanical properties, and deformation behavior. Int. J. Plast. 2021, 138, 102926. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Park, S.-H.; Lee, K.-A. Effect of post-heat treatment on the thermophysical and compressive mechanical properties of Cu-Ni-Sn alloy manufactured by selective laser melting. Mater. Charact. 2020, 162, 110194. [Google Scholar] [CrossRef]
- Mussatto, A.; Groarke, R.; O’Neill, A.; Obeidi, M.A.; Delaure, Y.; Brabazon, D. Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing. Addit. Manuf. 2021, 38, 101807. [Google Scholar] [CrossRef]
- Mostafaei, A.; De Vecchis, P.R.; Nettleship, I.; Chmielus, M. Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625. Mater. Des. 2019, 162, 375–383. [Google Scholar] [CrossRef]
- Kassym, K.; Perveen, A. Atomization processes of metal powders for 3D printing. Mater. Today Proc. 2020, 26, 1727–1733. [Google Scholar] [CrossRef]
- Strondl, A.; Lyckfeldt, O.; Brodin, H.; Ackelid, U. Characterization and Control of Powder Properties for Additive Manufacturing. JOM 2015, 67, 549–554. [Google Scholar] [CrossRef]
- Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemeș, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E. Producing metal powder from machining chips using ball milling process: A review. Materials 2023, 16, 4635. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Cao, J.; Huang, Y.; Lin, C.; He, C.; Bennett, P.; Liu, D. Effect of ball milling on the microstructure and performances of laser clad forming Cr3C2-NiCr composites. Rapid Prototyp. J. 2019, 25, 448–453. [Google Scholar] [CrossRef]
- Sarwat, S.G. Contamination in wet-ball milling. Powder Metall. 2017, 60, 267–272. [Google Scholar] [CrossRef]
- Cacace, S.; Furlan, V.; Sorci, R.; Semeraro, Q.; Boccadoro, M. Using recycled material to produce gas-atomized metal powders for additive manufacturing processes. J. Clean. Prod. 2020, 268, 122218. [Google Scholar] [CrossRef]
- Asgarian, A.; Tang, Z.; Bussmann, M.; Chattopadhyay, K. Water atomisation of metal powders: Effect of water spray configuration. Powder Metall. 2020, 63, 288–299. [Google Scholar] [CrossRef]
- Yin, Z.; Yu, D.; Zhang, Q.; Yang, S.; Yang, T. Experimental and Numerical Analysis of a Reverse-polarity Plasma Torch for Plasma Atomization. Plasma Chem. Plasma Process. 2021, 41, 1471–1495. [Google Scholar] [CrossRef]
- Tang, J.; Nie, Y.; Lei, Q.; Li, Y. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process. Adv. Powder Technol. 2019, 30, 2330–2337. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, Y.; Numata, H.; Bian, H.; Wako, K.; Yamanaka, K.; Aoyagi, K.; Zhang, C.; Chiba, A. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder. Powder Technol. 2020, 376, 363–372. [Google Scholar] [CrossRef]
- Yin, J.G.; Chen, G.; Zhao, S.Y.; Tan, P.; Li, Z.F.; Wang, J.; Tang, H.P. Titanium-Tantalum Alloy Powder Produced by the Plasma Rotating Electrode Process (PREP). Key Eng. Mater. 2018, 770, 18–22. [Google Scholar] [CrossRef]
- Airoldi, L.; Brucculeri, R.; Baldini, P.; Pini, F.; Vigani, B.; Rossi, S.; Auricchio, F.; Anselmi-Tamburini, U.; Morganti, S. 3D Printing of Copper Using Water-Based Colloids and Reductive Sintering. 3d Print. Addit. Manuf. 2023, 10, 559–568. [Google Scholar] [CrossRef]
- Pavlovic, M.G.; Popov, K.I. Metal Powder Production by Electrolysis. Electrochemistry Encyclopedia. 2005. Available online: https://knowledge.electrochem.org/encycl/art-p04-metalpowder.htm (accessed on 2 July 2024).
- Frink, S.; Connor, P. Precious Metal Powder Precipitation and Processing. Int. J. Powder Metall. 2009, 45. [Google Scholar]
- Hryha, E.; Shvab, R.; Gruber, H.; Leicht, A.; Nyborg, L. Surface oxide state on metal powder and its changes during additive manufacturing: An overview. Metall. Ital. 2018, 3, 34–39. [Google Scholar]
- Sanaei, N.; Fatemi, A.; Phan, N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater. Des. 2019, 182, 108091. [Google Scholar] [CrossRef]
- Gunenthiram, V.; Peyre, P.; Schneider, M.; Dal, M.; Coste, F.; Fabbro, R. Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel. J. Laser Appl. 2017, 29. [Google Scholar] [CrossRef]
- Li, E.; Zhou, Z.; Wang, L.; Zou, R.; Yu, A. Particle scale modelling of powder recoating and melt pool dynamics in laser powder bed fusion additive manufacturing: A review. Powder Technol. 2022, 409, 117789. [Google Scholar] [CrossRef]
- Li, E.L.; Wang, L.; Yu, A.B.; Zhou, Z.Y. A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process. Powder Technol. 2021, 381, 298–312. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Luo, Z.; Yan, Z. Simultaneous modeling of powder rigid motion and molten pool evolution for powder-based additive manufacturing. Powder Technol. 2023, 415, 118118. [Google Scholar] [CrossRef]
- Zapico, P.; Giganto, S.; Barreiro, J.; Martinez-Pellitero, S. Characterisation of 17-4PH metallic powder recycling to optimise the performance of the selective laser melting process. J. Mater. Res. Technol. 2020, 9, 1273–1285. [Google Scholar] [CrossRef]
- Li, K.; Zhao, Z.; Zhou, H.; Zhou, H.; Yin, J.; Zhang, W.; Zhou, G. Numerical Simulation of effect of different initial morphologies on melt hydrodynamics in Laser polishing of Ti6Al4V. Micromachines 2021, 12, 581. [Google Scholar] [CrossRef]
- Alnajjar, M.; Christien, F.; Wolski, K.; Bosch, C. Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing. Addit. Manuf. 2019, 25, 187–195. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Raza, A.; Hryha, E. Characterization of spatter and sublimation in alloy 718 during electron beam melting. Materials 2021, 14, 5953. [Google Scholar] [CrossRef]
- Liu, J.; Wen, P. Metal vaporization and its influence during laser powder bed fusion process. Mater. Des. 2022, 215, 110505. [Google Scholar] [CrossRef]
- Soundarapandiyan, G.; Leung, C.L.A.; Johnston, C.; Chen, B.; Khan, R.H.; McNutt, P.; Bhatt, A.; Atwood, R.C.; Lee, P.D.; Fitzpatrick, M.E. In situ monitoring the effects of Ti6Al4V powder oxidation during laser powder bed fusion additive manufacturing. Int. J. Mach. Tools Manuf. 2023, 190, 104049. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Z.; Chen, G.; Cai, W.; Zhang, C.; Tao, Q.; Qu, X.; Qin, M. Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization. Corros. Sci. 2021, 178, 109080. [Google Scholar] [CrossRef]
- Galicki, D.; List, F.; Babu, S.S.; Plotkowski, A.; Meyer, H.M.; Seals, R.; Hayes, C. Localized Changes of Stainless Steel Powder Characteristics During Selective Laser Melting Additive Manufacturing. Met. Mater. Trans. A 2019, 50, 1582–1605. [Google Scholar] [CrossRef]
- Caiazzo, F.; Alfieri, V.; Argenio, P.; Sergi, V. Additive manufacturing by means of laser-aided directed metal deposition of 2024 aluminium powder: Investigation and optimization. Adv. Mech. Eng. 2017, 9, 168781401771498. [Google Scholar] [CrossRef]
- Liu, M.; Chiu, L.N.; Shen, H.; Fang, X.; Tao, Z.; Huang, A.; Davies, C.; Wu, X.; Yan, W. Effective thermal conductivities of metal powders for additive manufacturing. Powder Technol. 2022, 401, 117323. [Google Scholar] [CrossRef]
- Nandy, J.; Sarangi, H.; Sahoo, S. A Review on Direct Metal Laser Sintering: Process Features and Microstructure Modeling. Lasers Manuf. Mater. Process. 2019, 6, 280–316. [Google Scholar] [CrossRef]
- Montufar, E.B.; Tkachenko, S.; Casas-Luna, M.; Škarvada, P.; Slámečka, K.; Diaz-de-la-Torre, S.; Koutnỳ, D.; Paloušek, D.; Koledova, Z.; Hernández-Tapia, L. Benchmarking of additive manufacturing technologies for commercially-pure-titanium bone-tissue-engineering scaffolds: Processing-microstructure-property relationship. Addit. Manuf. 2020, 36, 101516. [Google Scholar] [CrossRef]
- DeWitte, L.; Saldana, C.; Kurfess, T.; Fu, K. Effect of coaxial nozzle wear on catchment efficiency in direct energy deposition built components. J. Manuf. Syst. 2022, 63, 524–538. [Google Scholar] [CrossRef]
- Burke, P.; Kipouros, Y.G.; Judge, W.D.; Kipouros, G.J. Surprises and Pitfalls in the Development of Magnesium Powder Metallurgy Alloys. In Magnesium and Its Alloys; CRC Press: Boca Raton, FL, USA, 2019; pp. 337–373. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781351045476-12/surprises-pitfalls-development-magnesium-powder-metallurgy-alloys-paul-burke-yiannis-kipouros-william-judge-georges-kipouros (accessed on 3 July 2024).
- Gouge, M.; Michaleris, P. Thermo-Mechanical Modeling of Additive Manufacturing; Butterworth-Heinemann: Oxford, UK, 2017; Available online: https://books.google.com/books?hl=en&lr=&id=MuxGDgAAQBAJ&oi=fnd&pg=PP1&dq=mechanical+forces+in+additive+manufacturing&ots=UFyVDs3erd&sig=On2mEKuF9irlLzdzMZA1RU8sp4 (accessed on 3 July 2024).
- Xie, D.; Lv, F.; Liang, H.; Shen, L.; Tian, Z.; Zhao, J.; Song, Y.; Shuai, C. Towards a comprehensive understanding of distortion in additive manufacturing based on assumption of constraining force. Virtual Phys. Prototyp. 2021, 16 (Suppl. S1), S85–S97. [Google Scholar] [CrossRef]
- Xie, D.; Zhao, J.; Liang, H.; Tian, Z.; Shen, L.; Xiao, M.; Ahsan, M.N.; Wang, C. Assumption of constraining force to explain distortion in laser additive manufacturing. Materials 2018, 11, 2327. [Google Scholar] [CrossRef]
- Hyslop, R.L. Surface Contamination from the Use of Metal Powders at Two Additive Manufacturing Facilities. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2018. Available online: https://repository.nwu.ac.za/handle/10394/31145 (accessed on 3 July 2024).
- Gorji, N.E.; O’Connor, R.; Brabazon, D. XPS, XRD, and SEM characterization of the virgin and recycled metallic powders for 3D printing applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 591, 012016. [Google Scholar] [CrossRef]
- Horn, M.; Langer, L.; Schafnitzel, M.; Dietrich, S.; Schlick, G.; Seidel, C.; Reinhart, G. Influence of metal powder cross-contaminations on part quality in laser powder bed fusion: Copper alloy particles in maraging steel feedstock. Procedia CIRP 2020, 94, 167–172. [Google Scholar] [CrossRef]
- Ahsan, F.; Ladani, L. Temperature Profile, Bead Geometry, and Elemental Evaporation in Laser Powder Bed Fusion Additive Manufacturing Process. JOM 2020, 72, 429–439. [Google Scholar] [CrossRef]
- Klassen, A.; Scharowsky, T.; Körner, C. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J. Phys. D Appl. Phys. 2014, 47, 275303. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Yan, W. Evaporation Model for Keyhole Dynamics During Additive Manufacturing of Metal. Phys. Rev. Appl. 2020, 14, 064039. [Google Scholar] [CrossRef]
- Klassen, A.; Forster, V.E.; Körner, C. A multi-component evaporation model for beam melting processes. Model. Simul. Mater. Sci. Eng. 2016, 25, 025003. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Paul, B.K.; Pasebani, S. Metal Powder Recyclability in Binder Jet Additive Manufacturing. JOM 2020, 72, 3070–3079. [Google Scholar] [CrossRef]
- Brennan, M.C.; Keist, J.S.; Palmer, T.A. Defects in Metal Additive Manufacturing Processes. J. Mater. Eng. Perform. 2021, 30, 4808–4818. [Google Scholar] [CrossRef]
- Averardi, A.; Cola, C.; Zeltmann, S.E.; Gupta, N. Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing. Mater. Today Commun. 2020, 24, 100964. [Google Scholar] [CrossRef]
- Landauer, J.; Kuhn, M.; Nasato, D.S.; Foerst, P.; Briesen, H. Particle shape matters–using 3D printed particles to investigate fundamental particle and packing properties. Powder Technol. 2020, 361, 711–718. [Google Scholar] [CrossRef]
- Yun, H.; Dong, L.; Wang, W.; Bing, Z.; Xiangyun, L. Study on the flowability of TC4 Alloy Powder for 3D Printing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 439, 042006. [Google Scholar] [CrossRef]
- Bellini, C.; Berto, F.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Mocanu, L.P.; Razavi, N. Effect of recycling on internal and external defects of Ti-6Al-4V powder particles for electron beam melting process. Procedia Struct. Integr. 2022, 41, 175–182. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, R.; Xiao, M.; Wei, X.; Yin, Y.; Qu, Y.; Li, H.; Liu, P.; Qiu, X.; Guo, T. A comprehensive characterization of virgin and recycled 316L powders during laser powder bed fusion. J. Mater. Res. Technol. 2022, 18, 2292–2309. [Google Scholar] [CrossRef]
- Ahmed, F.; Ali, U.; Sarker, D.; Marzbanrad, E.; Choi, K.; Mahmoodkhani, Y.; Toyserkani, E. Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel. J. Mater. Process. Technol. 2020, 278, 116522. [Google Scholar] [CrossRef]
- Delacroix, T.; Lomello, F.; Schuster, F.; Maskrot, H.; Garandet, J.-P. Influence of powder recycling on 316L stainless steel feedstocks and printed parts in laser powder bed fusion. Addit. Manuf. 2022, 50, 102553. [Google Scholar] [CrossRef]
- Asgari, H.; Baxter, C.; Hosseinkhani, K.; Mohammadi, M. On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Mater. Sci. Eng. A 2017, 707, 148–158. [Google Scholar] [CrossRef]
- Bajt Leban, M.; Hren, M.; Kosec, T. The microstructure, mechanical and electrochemical properties of 3D printed alloys with reusing powders. Sci. Rep. 2023, 13, 3245. [Google Scholar] [CrossRef]
- Jacob, G.; Jacob, G.; Brown, C.U.; Donmez, M.A.; Watson, S.S.; Slotwinski, J. Effects of Powder Recycling on Stainless Steel Powder and Built Material Properties in Metal Powder Bed Fusion Processes; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. Available online: https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.100-6.pdf (accessed on 3 July 2024).
- Paccou, E.; Mokhtari, M.; Keller, C.; Nguejio, J.; Lefebvre, W.; Sauvage, X.; Boileau, S.; Babillot, P.; Bernard, P.; Bauster, E. Investigations of powder reusing on microstructure and mechanical properties of Inconel 718 obtained by additive manufacturing. Mater. Sci. Eng. A 2021, 828, 142113. [Google Scholar] [CrossRef]
- Contaldi, V.; Del Re, F.; Palumbo, B.; Squillace, A.; Corrado, P.; Di Petta, P. Mechanical characterisation of stainless steel parts produced by direct metal laser sintering with virgin and reused powder. Int. J. Adv. Manuf. Technol. 2019, 105, 3337–3351. [Google Scholar] [CrossRef]
- Emminghaus, N.; Bernhard, R.; Hermsdorf, J.; Kaierle, S. Residual oxygen content and powder recycling: Effects on microstructure and mechanical properties of additively manufactured Ti-6Al-4V parts. Int. J. Adv. Manuf. Technol. 2022, 121, 3685–3701. [Google Scholar] [CrossRef]
- Del Re, F.; Contaldi, V.; Astarita, A.; Palumbo, B.; Squillace, A.; Corrado, P.; Di Petta, P. Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing. Int. J. Adv. Manuf. Technol. 2018, 97, 2231–2240. [Google Scholar] [CrossRef]
- Weiss, C.; Haefner, C.L.; Munk, J. On the Influence of AlSi10Mg Powder Recycling Behavior in the LPBF Process and Consequences for Mechanical Properties. JOM 2022, 74, 1188–1199. [Google Scholar] [CrossRef]
- Rayan, O.; Brousseau, J.; Belzile, C.; Ouafi, A.E. Maraging steel powder recycling effect on the tensile and fatigue behavior of parts produced through the laser powder bed fusion (L-PBF) process. Int. J. Adv. Manuf. Technol. 2023, 127, 1737–1754. [Google Scholar] [CrossRef]
- Foti, P.; Mocanu, L.P.; Razavi, N.; Bellini, C.; Borrelli, R.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Berto, F. Effect of recycling powder on the fatigue properties of AM Ti6Al4V. Procedia Struct. Integr. 2022, 42, 1436–1441. [Google Scholar] [CrossRef]
- Soltani-Tehrani, A.; Pegues, J.; Shamsaei, N. Fatigue behavior of additively manufactured 17-4 PH stainless steel: The effects of part location and powder re-use. Addit. Manuf. 2020, 36, 101398. [Google Scholar] [CrossRef]
- Moghimian, P.; Poirié, T.; Habibnejad-Korayem, M.; Zavala, J.A.; Kroeger, J.; Marion, F.; Larouche, F. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit. Manuf. 2021, 43, 102017. [Google Scholar] [CrossRef]
- Koushik, T.; Shen, H.; Kan, W.H.; Gao, M.; Yi, J.; Ma, C.; Lim, S.C.V.; Chiu, L.N.S.; Huang, A. Effective Ti-6Al-4V Powder Recycling in LPBF Additive Manufacturing Considering Powder History. Sustainability 2023, 15, 15582. [Google Scholar] [CrossRef]
- Warner, J.H.; Ringer, S.P.; Proust, G. Strategies for metallic powder reuse in powder bed fusion: A review. J. Manuf. Process. 2024, 110, 263–290. [Google Scholar] [CrossRef]
- Smolina, I.; Gruber, K.; Pawlak, A.; Ziółkowski, G.; Grochowska, E.; Schob, D.; Kobiela, K.; Roszak, R.; Ziegenhorn, M.; Kurzynowski, T. Influence of the AlSi7Mg0. 6 aluminium alloy powder reuse on the quality and mechanical properties of LPBF samples. Materials 2022, 15, 5019. [Google Scholar] [CrossRef] [PubMed]
- Okello, A.; Samper, V. Effective Powder Reuse Strategies. GE Additive. Available online: https://3dprint.com/wp-content/uploads/2022/03/GE-Additive_Powder-Reuse_WP.pdf (accessed on 16 July 2024).
- Lutter-Günther, M.; Gebbe, C.; Kamps, T.; Seidel, C.; Reinhart, G. Powder recycling in laser beam melting: Strategies, consumption modeling and influence on resource efficiency. Prod. Eng. Res. Devel. 2018, 12, 377–389. [Google Scholar] [CrossRef]
- Diener, S.; Zocca, A.; Günster, J. Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing. Open Ceram. 2021, 8, 100191. [Google Scholar] [CrossRef]
- Popov, V.V.; Grilli, M.L.; Koptyug, A.; Jaworska, L.; Katz-Demyanetz, A.; Klobčar, D.; Balos, S.; Postolnyi, B.O.; Goel, S. Powder bed fusion additive manufacturing using critical raw materials: A review. Materials 2021, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Solexis, S. Centrifugal separator provides high capacity screening of resin powders. Filtr. Sep. 2004, 41, 18–19. [Google Scholar] [CrossRef]
- Gruber, H.; Henriksson, M.; Hryha, E.; Nyborg, L. Effect of Powder Recycling in Electron Beam Melting on the Surface Chemistry of Alloy 718 Powder. Met. Mater. Trans. A 2019, 50, 4410–4422. [Google Scholar] [CrossRef]
- Keaton, A.I. Assessing the Recyclability of Stainless-Steel Powder Used in Selective Laser Melting-3D Printing. Master’s Thesis, North Carolina Agricultural and Technical State University, Greensboro, NC, USA, 2019. Available online: https://digital.library.ncat.edu/theses/386/ (accessed on 4 July 2024).
- Cherkezova-Zheleva, Z.; Burada, M.; Sobetkii, A.E.; Paneva, D.; Fironda, S.A.; Piticescu, R.-R. Green and Sustainable Rare Earth Element Recycling and Reuse from End-of-Life Permanent Magnets. Metals 2024, 14, 658. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shen, J.X.; Wu, H.Q. Application and research status of alternative materials for 3D-printing technology. J. Aeronaut. Mater. 2016, 36, 89–98. [Google Scholar]
- Batistão, B.F.; Pinotti, V.E.; de Lima, M.L.; Rodrigues, A.D.G.; de Traglia Amancio-Filho, S.; Gargarella, P. Wet chemical surface functionalization of AA2017 powders for additive manufacturing. Powder Technol. 2024, 443, 119938. [Google Scholar] [CrossRef]
- Qian, J.; Dong, D.; Wei, G.; Shi, M.; Tang, S. A method for the preparation of spherical titanium powder for additive manufacturing. Powder Technol. 2022, 411, 117927. [Google Scholar] [CrossRef]
- Shaikh, A.S. Development of a γ’precipitation hardening Ni-base superalloy for additive manufacturing. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018. Available online: https://odr.chalmers.se/handle/20.500.12380/255645 (accessed on 4 July 2024).
- Anderson, A.; Gallegos, S.; Rezaie, B.; Azarmi, F. Present and Future Sustainability Development of 3D Metal Printing. Eur. J. Sustain. Dev. Res. 2021, 5, em0168. [Google Scholar]
- Kim, D.; Hirayama, Y.; Takagi, K.; Kwon, H. Surface cleaning effect of bare aluminum micro-sized powder by low oxygen induction thermal plasma. Materials 2022, 15, 1553. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-H.; Wang, L.-Z.; Chen, T.; Duan, X.-M.; Li, W. Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization. Adv. Powder Technol. 2017, 28, 2431–2437. [Google Scholar] [CrossRef]
Base Metal | Alloy | Ref. | Technique |
---|---|---|---|
Titanium | Ti-6Al-4V | [105,106,107,108] | L-PBF |
[109,110,111,112] | EB-PBF | ||
[37,113,114,115] | DED | ||
[116,117,118,119] | BJ | ||
Ti-6Al-2Sn-4Zr-2Mo | [120,121,122,123] | L-PBF | |
[122,124,125,126] | EB-PBF | ||
Ti-6Al-2Sn-4Zr-6Mo | [82,127,128,129] | L-PBF | |
Ti-5Al-2.5Sn | [130,131,132,133] | L-PBF | |
Ti-5Al-2Sn-2Zr-4Mo-4Cr | [134] | L-PBF | |
Ti-xCu | [135] | L-PBF | |
Ti-xCu-yFe | [136] | L-PBF | |
Ti-8.5Cu | [137] | L-PBF | |
Ti-xMo | [138,139,140] | L-PBF | |
[141,142] | EB-PBF | ||
[143,144,145] | DED | ||
Ti-3Al-8V-6Cr-4Mo-4Zr | [146] | L-PBF | |
[147] | DED | ||
Ti-5Al-5Mo-5V-3Cr-1Zr | [148,149,150] | L-PBF | |
Ti-5Al-5V-5Mo-3Cr | [148] | L-PBF | |
Ti-6Al-7Nb | [151,152,153,154] | L-PBF | |
Ti-15Mo-3Nb-3Al-0.2Si | [155,156,157] | L-PBF | |
Ti-5Al-2.5Sn | [130,131,133,158] | L-PBF | |
Ti-36Nb-2Ta-3Zr-0.35O | [159] | EB-PBF | |
Ti-35Nb-7Zr-5Ta | [160] | EB-PBF | |
Ti-4Al-5Co-0.25Si | [161] | DED | |
CP | [162,163,164,165] | L-PBF | |
[166,167,168] | EB-PBF | ||
[169,170] | DED | ||
[11,171,172] | BJ | ||
Steel | 316 | [173,174,175] | L-PBF |
[176,177] | EB-PBF | ||
[178] | DED | ||
316L | [26,179,180,181] | L-PBF | |
[179,182] | EB-PBF | ||
[183,184,185,186] | DED | ||
[187,188,189,190] | BJ | ||
303 | [191,192,193,194] | DED | |
17-4PH | [85,195,196,197] | L-PBF | |
[198,199] | DED | ||
[200,201,202] | BJ | ||
304 | [203,204] | L-PBF | |
[205] | EB-PBF | ||
[202,206,207] | DED | ||
304L | [86,208,209,210] | L-PBF | |
[211] | EB-PBF | ||
15-5PH | [87,212,213,214] | L-PBF | |
[215,216,217] | DED | ||
410 | [88] | L-PBF | |
310S | [218] | L-PBF | |
321 | [219] | L-PBF | |
[220,221] | EB-PBF | ||
420 | [222,223,224,225] | L-PBF | |
[226] | DED | ||
430 | [227] | L-PBF | |
4140 | [228,229] | L-PBF | |
2205 | [230] | L-PBF | |
2507 | [231] | L-PBF | |
904L | [232] | L-PBF | |
Aluminum | AlSi10Mg | [89,233,234,235] | L-PBF |
[236,237,238] | DED | ||
[12] | BJ | ||
AlMg1SiCu | [90] | L-PBF | |
AlSi12 | [91,239,240,241] | L-PBF | |
[242] | DED | ||
AlSi7Mg | [92] | L-PBF | |
[243] | BJ | ||
AlSi10Mg | [244] | DED | |
2024 | [245,246] | L-PBF | |
2011 | [247] | L-PBF | |
2219 | [248] | L-PBF | |
3003 | [249] | L-PBF | |
3104 | [250,251] | DED | |
4020 | [252] | L-PBF | |
4047 | [253] | L-PBF | |
5005 | [254] | L-PBF | |
5052 | [254] | L-PBF | |
5083 | [252] | L-PBF | |
5183 | [255] | L-PBF | |
5087 | [256,257] | L-PBF | |
5754 | [256] | L-PBF | |
[258] | DED | ||
6061 | [259,260,261,262] | L-PBF | |
[263] | DED | ||
[264] | BJ | ||
6063 | [265,266,267] | L-PBF | |
6082 | [268] | L-PBF | |
7075 | [269,270,271,272] | L-PBF | |
[273] | DED | ||
7050 | [253,274] | L-PBF | |
[275] | DED | ||
Nickel | Monel 400 | [96,276] | L-PBF |
[277] | DED | ||
Monel K-500 | [278] | L-PBF | |
[279] | DED | ||
Inconel 600 | [280] | L-PBF | |
[281,282] | DED | ||
Inconel 625 | [94,283,284] | L-PBF | |
[285] | EB-PBF | ||
[42,281,286,287] | DED | ||
[288,289,290] | BJ | ||
Inconel 718 | [93,291,292,293] | L-PBF | |
[294,295,296] | EB-PBF | ||
[42,297,298] | DED | ||
[299,300] | BJ | ||
Inconel 825 | [301] | L-PBF | |
Hastelloy C-22 | [302] | L-PBF | |
[303,304] | DED | ||
Invar 36 | [305,306,307,308] | L-PBF | |
[309] | EB-PBF | ||
[310,311,312] | BJ | ||
Nitinol | [313,314,315,316] | L-PBF | |
[317,318,319] | EB-PBF | ||
[320,321,322] | DED | ||
Waspaloy | [323,324,325,326] | L-PBF | |
[327] | DED | ||
Cobalt | CoCrMo | [328,329,330,331] | L-PBF |
[332,333,334,335] | EB-PBF | ||
[336] | DED | ||
[337,338] | BJ | ||
CoCrW | [99,339,340,341] | L-PBF | |
CoCrNiMo | [100] | L-PBF | |
[342] | DED | ||
Stellite 6 | [343] | L-PBF | |
[343,344] | DED | ||
[345,346] | BJ | ||
Stellite 21 | [347] | L-PBF | |
[348] | DED | ||
Stellite 12 | [349] | L-PBF | |
Haynes 188 | [350,351,352] | L-PBF | |
Haynes 230 | [353,354] | L-PBF | |
Haynes 233 | [355] | L-PBF | |
Haynes 282 | [356,357,358] | L-PBF | |
[359,360] | EB-PBF | ||
Mar-M509 | [361,362,363] | L-PBF | |
[364] | EB-PBF | ||
Copper | CP | [365,366,367] | L-PBF |
[368,369,370] | EB-PBF | ||
[371,372,373] | BJ | ||
Cu-xCr-yZr | [374,375,376,377] | L-PBF | |
[378,379] | EB-PBF | ||
[380,381,382] | DED | ||
Cu-xCr-yZn | [383,384] | L-PBF | |
Cu-xCr | [385,386,387] | L-PBF | |
[388] | EB-PBF | ||
Cu-xCr-yNb | [389,390,391,392] | L-PBF | |
[393] | DED | ||
Cu-xSn | [394,395,396] | L-PBF | |
[397] | DED | ||
[398] | BJ | ||
Cu-xNi-ySn | [399,400,401] | L-PBF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzutti, A.; Marin, E. The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review. Metals 2024, 14, 886. https://doi.org/10.3390/met14080886
Lanzutti A, Marin E. The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review. Metals. 2024; 14(8):886. https://doi.org/10.3390/met14080886
Chicago/Turabian StyleLanzutti, Alex, and Elia Marin. 2024. "The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review" Metals 14, no. 8: 886. https://doi.org/10.3390/met14080886
APA StyleLanzutti, A., & Marin, E. (2024). The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review. Metals, 14(8), 886. https://doi.org/10.3390/met14080886