Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Measuring Equipment
2.2. Evaluation of the Solidification Texture Using EBSD Analysis
- Segment 1: horizontally grown grains with ellipse angles from 0° to 25.7° and 154.3° to 180°.
- Segment 2: diagonally grown grains with ellipse angles from 25.7° to 51.4° and 128.6° to 154.3°.
- Segment 3: grains that grew almost vertically with ellipse angles from 51.4° to 77.0° and 102.9° to 128.6°.
- Segment 4: vertically grown grains with ellipse angles from 77.0 to 102.9°.
3. Results
3.1. Influence of Laser Scanning Speed
3.2. Influence of the Laser Power
3.3. Influence of Laser Power and Scanning Speed at Constant Line Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herbst, J.F. R2Fe14 B materials: Intrinsic properties and technological aspects. Rev. Mod. Phys. 1991, 63, 819–898. [Google Scholar] [CrossRef]
- Kim, A.S.; Camp, F.E.; Stadelmaier, H.H. Relation of remanence and coercivity of Nd,(Dy)-Fe,(Co)-B sintered permanent magnets to crystallite orientation. J. Appl. Phys. 1994, 76, 6265–6267. [Google Scholar] [CrossRef]
- Goll, D.; Vogelgsang, D.; Pflanz, U.; Hohs, D.; Grubesa, T.; Schurr, J.; Bernthaler, T.; Kolb, D.; Riegel, H.; Schneider, G. Refining the Microstructure of Fe-Nd-B by Selective Laser Melting. Phys. Status Solidi RRL 2019, 13, 1800536. [Google Scholar] [CrossRef]
- Goll, D.; Trauter, F.; Braun, P.; Laukart, J.; Loeffler, R.; Golla-Schindler, U.; Schneider, G. Additive Manufacturing of Permanent Magnets Based on (CoCuFeZr)17Sm2. Phys. Status Solidi RRL 2021, 15, 2100294. [Google Scholar] [CrossRef]
- Goll, D.; Trauter, F.; Loeffler, R.; Gross, T.; Schneider, G. Additive Manufacturing of Textured FePrCuB Permanent Magnets. Micromachines 2021, 12, 1056. [Google Scholar] [CrossRef]
- Goll, D.; Schurr, J.; Trauter, F.; Schanz, J.; Bernthaler, T.; Riegel, H.; Schneider, G. Additive manufacturing of soft and hard magnetic materials. Procedia CIRP 2020, 94, 248–253. [Google Scholar] [CrossRef]
- Périgo, E.A.; Jacimovic, J.; García Ferré, F.; Scherf, L.M. Additive manufacturing of magnetic materials. Addit. Manuf. 2019, 30, 100870. [Google Scholar] [CrossRef]
- Bittner, F.; Thielsch, J.; Drossel, W.-G. Microstructure and magnetic properties of Nd-Fe-B permanent magnets produced by laser powder bed fusion. Scr. Mater. 2021, 201, 113921. [Google Scholar] [CrossRef]
- Bittner, F.; Thielsch, J.; Drossel, W.-G. Unexpected Coercivity Enhancement >1T for Nd-Fe-B Permanent Magnets With 20 wt% Nd Produced by Laser Powder Bed Fusion. IEEE Trans. Magn. 2022, 58, 1–5. [Google Scholar] [CrossRef]
- Magnequench. Magnequench MQP Powder: MQP-S-11-9-20001-070 Isotropic Powder. Available online: https://mqitechnology.com/product/mqp-s-11-9-20001/ (accessed on 5 September 2024).
- Goll, D.; Trauter, F.; Bernthaler, T.; Schanz, J.; Riegel, H.; Schneider, G. Additive Manufacturing of Bulk Nanocrystalline FeNdB Based Permanent Magnets. Micromachines 2021, 12, 538. [Google Scholar] [CrossRef]
- Tosoni, O.; Borges Mendonça, E.; Reijonen, J.; Antikainen, A.; Schäfer, L.; Riegg, S.; Gutfleisch, O. High-coercivity copper-rich Nd-Fe-B magnets by powder bed fusion using laser beam method. Addit. Manuf. 2023, 64, 103426. [Google Scholar] [CrossRef]
- Kwon, H.W.; Bowen, P.; Harris, I.R. A study of Pr-Fe-B-Cu permanent magnetic alloys. J. Alloys Compd. 1992, 182, 233–242. [Google Scholar] [CrossRef]
- Mycock, G.J.; Faria, R.; Harris, I.R. The microstructures and magnetic properties of some cast and annealed Pr-Fe-Cu-B alloys. J. Alloys Compd. 1993, 201, 23–28. [Google Scholar] [CrossRef]
- Shimoda, T.; Akioka, K.; Kobayashi, O.; Yamagami, T.; Ohki, T.; Miyagawa, M.; Yuri, T. Hot-working behavior of cast Pr-Fe-B magnets. IEEE Trans. Magn. 1989, 25, 4099–4104. [Google Scholar] [CrossRef]
- Schäfer, L.; Skokov, K.; Liu, J.; Maccari, F.; Braun, T.; Riegg, S.; Radulov, I.; Gassmann, J.; Merschroth, H.; Harbig, J.; et al. Design and Qualification of Pr–Fe–Cu–B Alloys for the Additive Manufacturing of Permanent Magnets. Adv. Funct. Mater. 2021, 11, 2102148. [Google Scholar] [CrossRef]
- Arnold Magnetic Technologies Corporation. Recoma® Sintered Samarium Cobalt Magnets. Available online: https://www.arnoldmagnetics.de/products/recoma-samarium-cobalt-magnets/ (accessed on 5 September 2024).
- Schleifenbaum, H.; Meiners, W.; Wissenbach, K.; Hinke, C. Individualized production by means of high power Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2010, 2, 161–169. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D.J. Fundamentals of Solidification, 3rd ed.; Trans Tech Publication: Aedermannsdorf, Switzerland, 1992; ISBN 0878495223. [Google Scholar]
- Zhang, T.; Liu, H.; Ma, Z.; Jiang, C. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J. Alloys Compd. 2015, 637, 253–256. [Google Scholar] [CrossRef]
- Plugaru, N.; Rubín, J.; Bartolomé, J. Structural and magnetic investigation of Co-rich Sm–Co unidirectionally solidified alloys. J. Alloys Compd. 2007, 433, 129–139. [Google Scholar] [CrossRef]
- Kurz, W.; Trivedi, R. Microstructure and Phase Selection in Laser Treatment of Materials. J. Eng. Mater. Technol. 1992, 114, 450–458. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Liu, Y. Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy. J. Cryst. Growth 2019, 521, 15–29. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2003; ISBN 0471434914. [Google Scholar]
- Thijs, L.; Kempen, K.; Kruth, J.-P.; van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013, 61, 1809–1819. [Google Scholar] [CrossRef]
- Krakhmalev, P.; Fredriksson, G.; Svensson, K.; Yadroitsev, I.; Yadroitsava, I.; Thuvander, M.; Peng, R. Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion. Metals 2018, 8, 643. [Google Scholar] [CrossRef]
- Köhnen, P.; Létang, M.; Voshage, M.; Schleifenbaum, J.H.; Haase, C. Understanding the process-microstructure correlations for tailoring the mechanical properties of L-PBF produced austenitic advanced high strength steel. Addit. Manuf. 2019, 30, 100914. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, Y.; Chen, Z.; Wei, P.; Liu, W.; Yao, S.; Lu, B. Effect of Laser Energy Density on the Microstructure and Texture Evolution of Hastelloy-X Alloy Fabricated by Laser Powder Bed Fusion. Materials 2021, 14, 4305. [Google Scholar] [CrossRef]
- Bass, M. (Ed.) Laser Materials Processing; North-Holland: Amsterdam, The Netherlands, 1983; ISBN 0444863966. [Google Scholar]
- Ready, J.F. Industry Government Education, MPI. LIA Handbook of Laser Materials Processing, 1st ed.; Laser Institute of America; Magnolia Publication: Orlando, FL, USA, 2001; ISBN 978-3-540-41770-5. [Google Scholar]
- Nath, A.K.; Sridhar, R.; Ganesh, P.; Kaul, R. Laser power coupling efficiency in conduction and keyhole welding of austenitic stainless steel. Sadhana 2002, 27, 383–392. [Google Scholar] [CrossRef]
- Ion, J.C. Laser beam welding of wrought aluminium alloys. Sci. Technol. Weld. Join. 2000, 5, 265–276. [Google Scholar] [CrossRef]
- Antikainen, A.; Reijonen, J.; Lagerbom, J.; Lindroos, M.; Pinomaa, T.; Lindroos, T. Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steel. J. Mater. Eng Perform 2022, 31, 8418–8432. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M. On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. J. Mater. Process. Technol. 2016, 230, 88–98. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 2010, 210, 1624–1631. [Google Scholar] [CrossRef]
- Aversa, A.; Moshiri, M.; Librera, E.; Hadi, M.; Marchese, G.; Manfredi, D.; Lorusso, M.; Calignano, F.; Biamino, S.; Lombardi, M.; et al. Single scan track analyses on aluminium based powders. J. Mater. Process. Technol. 2018, 255, 17–25. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, M.; Huang, H. Selective laser melting of alumina: A single track study. Ceram. Int. 2018, 44, 9484–9493. [Google Scholar] [CrossRef]
- Ghosh, S.; Ma, L.; Levine, L.E.; Ricker, R.E.; Stoudt, M.R.; Heigel, J.C.; Guyer, J.E. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625. JOM 2018, 70, 1011–1016. [Google Scholar] [CrossRef]
- Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S. Effect of Laser Powder Bed Fusion Parameters on the Microstructure and Texture Development in Superelastic Ti–18Zr–14Nb Alloy. Shap. Mem. Superelasticity 2017, 3, 361–372. [Google Scholar] [CrossRef]
- Andreau, O.; Koutiri, I.; Peyre, P.; Penot, J.-D.; Saintier, N.; Pessard, E.; de Terris, T.; Dupuy, C.; Baudin, T. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Technol. 2019, 264, 21–31. [Google Scholar] [CrossRef]
- Cepeda-Jiménez, C.M.; Potenza, F.; Magalini, E.; Luchin, V.; Molinari, A.; Pérez-Prado, M.T. Effect of energy density on the microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion. Mater. Charact. 2020, 163, 110238. [Google Scholar] [CrossRef]
- de Moura Nobre, R.; de Morais, W.A.; Vasques, M.T.; Guzmán, J.; Rodrigues Junior, D.L.; Oliveira, H.R.; Falcão, R.B.; Landgraf, F.J.G. Role of laser powder bed fusion process parameters in crystallographic texture of additive manufactured Nb–48Ti alloy. J. Mater. Res. Technol. 2021, 14, 484–495. [Google Scholar] [CrossRef]
- Niendorf, T.; Leuders, S.; Riemer, A.; Richard, H.A.; Tröster, T.; Schwarze, D. Highly Anisotropic Steel Processed by Selective Laser Melting. Met. Mater. Trans B 2013, 44, 794–796. [Google Scholar] [CrossRef]
- Niendorf, T.; Leuders, S.; Riemer, A.; Brenne, F.; Tröster, T.; Richard, H.A.; Schwarze, D. Functionally Graded Alloys Obtained by Additive Manufacturing. Adv. Eng. Mater. 2014, 16, 857–861. [Google Scholar] [CrossRef]
- Niendorf, T.; Brenne, F.; Schaper, M.; Riemer, A.; Leuders, S.; Reimche, W.; Schwarze, D.; Maier, H.J. Labelling additively manufactured parts by microstructural gradation—Advanced copy-proof design. RPJ 2016, 22, 630–635. [Google Scholar] [CrossRef]
- Brenne, F.; Leuders, S.; Niendorf, T. On the Impact of Additive Manufacturing on Microstructural and Mechanical Properties of Stainless Steel and Ni-base Alloys. Bergund Hüttenmännische Monatshefte 2017, 162, 199–202. [Google Scholar] [CrossRef]
- Ehsan Saghaian, S.; Nematollahi, M.; Toker, G.; Hinojos, A.; Shayesteh Moghaddam, N.; Saedi, S.; Lu, C.Y.; Javad Mahtabi, M.; Mills, M.J.; Elahinia, M.; et al. Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi. Opt. Laser Technol. 2022, 149, 107680. [Google Scholar] [CrossRef]
- Lasalmonie, A.; Strudel, J.L. Influence of grain size on the mechanical behaviour of some high strength materials. J. Mater. Sci. 1986, 21, 1837–1852. [Google Scholar] [CrossRef]
- Zhou, X.; Song, X.; Jia, W.; Xiao, A.; Yuan, T.; Ma, T. Identifications of SmCo5 and Sm+1Co5−1-type phases in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Scr. Mater. 2020, 182, 1–5. [Google Scholar] [CrossRef]
- Braun, P.; Laukart, J.; Golla-Schindler, U.; Löffler, R.; Goll, D.; Schneider, G. Analysis of microstructure evolution during heat treatment of CoSm permanent magnets using high-resolution scanning electron microscopy. Pract. Metallogr. 2022, 59, 188–198. [Google Scholar] [CrossRef]
- Palit, M.; Rajkumar, D.M.; Pandian, S.; Kamat, S.V. Effect of grain size on microstructure and magnetic properties of Sm2(Co,Cu,Fe,Zr)17 permanent magnets. Mater. Chem. Phys. 2016, 179, 214–222. [Google Scholar] [CrossRef]
- Ishimoto, T.; Hagihara, K.; Hisamoto, K.; Sun, S.-H.; Nakano, T. Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus. Scr. Mater. 2017, 132, 34–38. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Kruth, J.-P. Modelling of radiation transfer in metallic powders at laser treatment. Int. J. Heat Mass Transf. 2005, 48, 3423–3434. [Google Scholar] [CrossRef]
Sample (PL, vs) | Line Energy | Melt-Pool | Melt-Pool | Melt-Pool | GSAR | Feretmax | Feretmin |
---|---|---|---|---|---|---|---|
EL (J/mm) | Depth (µm) | Width (µm) | Aspect Ratio | Mean | d90 (µm) | d90 (µm) | |
200 W, 200 mm/s | 1.00 | 790 | 263 | 3.00 | 0.44 | 96.8 | 42.5 |
200 W, 400 mm/s | 0.50 | 284 | 212 | 1.34 | 0.37 | 73.0 | 18.2 |
200 W, 600 mm/s | 0.33 | 118 | 217 | 0.57 | 0.25 | 65.8 | 11.6 |
200 W, 800 mm/s | 0.25 | 65 | 200 | 0.33 | 0.30 | 73.6 | 18.6 |
Sample (PL, vs) | GSAR < 0.5 | GSO Area Fraction | |||
---|---|---|---|---|---|
(Columnar) (%) | Segment 1 (%) | Segment 2 (%) | Segment 3 (%) | Segment 4 (%) | |
200 W, 200 mm/s | 66 | 43.5 | 35.6 | 16.7 | 4.2 |
200 W, 400 mm/s | 75 | 17.6 | 17.4 | 34.9 | 30.1 |
200 W, 600 mm/s | 89 | 14.5 | 32.8 | 22.7 | 30.0 |
200 W, 800 mm/s | 93 | 4.7 | 12.9 | 65.9 | 16.5 |
Sample (PL, vs) | Line Energy | Melt-Pool | Melt-Pool | Melt-Pool | GSAR | Feretmax | Feretmin |
---|---|---|---|---|---|---|---|
EL (J/mm) | Depth (µm) | Width (µm) | Aspect Ratio | Mean | d90 (µm) | d90 (µm) | |
50 W, 600 mm/s | 0.08 | 25 | 170 | 0.15 | 0.40 | 24.5 | 8.8 |
100 W, 600 mm/s | 0.17 | 80 | 124 | 0.65 | 0.25 | 44.8 | 7.3 |
150 W, 600 mm/s | 0.25 | 63 | 231 | 0.27 | 0.33 | 44.4 | 14.7 |
200 W, 600 mm/s | 0.33 | 118 | 207 | 0.57 | 0.25 | 65.8 | 11.6 |
Sample (PL, vs) | GSAR < 0.5 | GSO Area Fraction | |||
---|---|---|---|---|---|
(Columnar) (%) | Segment 1 (%) | Segment 2 (%) | Segment 3 (%) | Segment 4 (%) | |
50 W, 600 mm/s | 70 | 0.4 | 5.5 | 73.7 | 20.4 |
100 W, 600 mm/s | 90 | 7.0 | 25.2 | 46.9 | 20.9 |
150 W, 600 mm/s | 85 | 7.4 | 10.7 | 36.2 | 45.7 |
200 W, 600 mm/s | 89 | 14.5 | 32.8 | 22.7 | 30.0 |
Sample (PL, vs) | Line Energy | Melt-Pool | Melt-Pool | Melt-Pool | GSAR | Feretmax | Feretmin |
---|---|---|---|---|---|---|---|
EL (J/mm) | Depth (µm) | Width (µm) | Aspect Ratio (-) | Mean (-) | d90 (µm) | d90 (µm) | |
50 W, 200 mm/s | 0.25 | 52 | 155 | 0.34 | 0.33 | 45.1 | 17.3 |
100 W, 400 mm/s | 0.25 | 61 | 150 | 0.41 | 0.28 | 62.6 | 10.3 |
150 W, 600 mm/s | 0.25 | 63 | 231 | 0.27 | 0.33 | 44.4 | 14.7 |
200 W, 800 mm/s | 0.25 | 65 | 200 | 0.33 | 0.30 | 73.6 | 18.6 |
Sample (PL, vs) | GSAR < 0.5 | GSO Area Fraction | |||
---|---|---|---|---|---|
(Columnar) (%) | Segment 1 (%) | Segment 2 (%) | Segment 3 (%) | Segment 4 (%) | |
50 W, 200 mm/s | 83 | 5.0 | 17.5 | 46.1 | 31.4 |
100 W, 400 mm/s | 88 | 9.1 | 17.1 | 47.1 | 26.7 |
150 W, 600 mm/s | 85 | 7.4 | 10.7 | 36.2 | 45.7 |
200 W, 800 mm/s | 93 | 4.7 | 12.9 | 65.9 | 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trauter, F.; Loeffler, R.; Schneider, G.; Goll, D. Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2. Metals 2024, 14, 1025. https://doi.org/10.3390/met14091025
Trauter F, Loeffler R, Schneider G, Goll D. Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2. Metals. 2024; 14(9):1025. https://doi.org/10.3390/met14091025
Chicago/Turabian StyleTrauter, Felix, Ralf Loeffler, Gerhard Schneider, and Dagmar Goll. 2024. "Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2" Metals 14, no. 9: 1025. https://doi.org/10.3390/met14091025
APA StyleTrauter, F., Loeffler, R., Schneider, G., & Goll, D. (2024). Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2. Metals, 14(9), 1025. https://doi.org/10.3390/met14091025