Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Porosities less than 0.5% for all the scanning strategies are possible.
- Deposition volumes of 33 cm3 h−1 (which is 0.28 kg h−1) are deposited.
- The scan strategy offset bidirectional shows the highest ultimate tensile strength of 1001 ± 19 MPa and yield strength of 711 ± 27 MPa, the smallest grain size and the lowest anisotropy concerning strength and elongation to failure under different loads.
- The tensile properties of the printed samples (tensile strength and yield strength) are better than those of wrought parts, but their ductility is lower, which can be attributed to the different sample geometries.
- An ultimate tensile strength of 1000 MPa and a yield strength over 710 MPa can be realized without any heat treatment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DIN EN ISO/ASTM 52900: 2021; Additive Manufacturing–General Principles–Fundamentals and Vocabulary. Beuth Verlag: Berlin, Germany, 2021.
- Colomo, A.G.; Wood, D.; Martina, F.; Williams, S.W. A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications. Int. J. Rapid Manuf. 2020, 9, 194. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today Proc. 2021, 49, 271–295. [Google Scholar] [CrossRef]
- ASTM F3187-16; Standard Guide for Directed Energy Deposition of Metals. ASTM International: West Conshohocken, PA, USA, 2016.
- Hilzenthaler, M.; Bifano, L.; Scherm, F.; Fischerauer, G.; Seemann, A.; Glatzel, U. Characterization of recycled AISI 904L superaustenitic steel powder and influence on selective laser melted parts. Powder Technol. 2021, 391, 57–68. [Google Scholar] [CrossRef]
- Kumar, S.P.; Elangovan, S.; Mohanraj, R.; Ramakrishna, J.R. A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition. Mater. Today Proc. 2021, 46, 7892–7906. [Google Scholar] [CrossRef]
- Dinda, G.P.; Dasgupta, A.K.; Mazumder, J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. A 2009, 509, 98–104. [Google Scholar] [CrossRef]
- Kohl, H.K.; Peng, K. Thermal stability of the superalloys Inconel 625 and Nimonic 86. J. Nucl. Mater. 1981, 101, 243–250. [Google Scholar] [CrossRef]
- Suave, L.M.; Cormier, J.; Villechaise, P.; Soula, A.; Hervier, Z.; Bertheau, D.; Laigo, J. Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process. Metall. Mater. Trans. A 2014, 45, 2963–2982. [Google Scholar] [CrossRef]
- Abioye, T.E.; Folkes, J.; Clare, A.T. A parametric study of Inconel 625 wire laser deposition. J. Mater. Process. Technol. 2013, 213, 2145–2151. [Google Scholar] [CrossRef]
- Paul, C.P.; Ganesh, P.; Mishra, S.K.; Bhargava, P.; Negi, J.; Nath, A.K. Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 2007, 39, 800–805. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef]
- Chaurasia, J.K.; Jinoop, A.N.; Paul, C.P.; Bindra, K.S.; Balla, V.K.; Bontha, S. Effect of deposition strategy and post processing on microstructure and mechanical properties of serviced Inconel 625 parts repaired using laser directed energy deposition. Opt. Laser Technol. 2024, 168, 109831. [Google Scholar] [CrossRef]
- Hua, B.; Xu, H.; Zhan, W.; Tian, T.; Yin, J.; Zhang, Q. Microstructure and mechanical properties of IN718 on 42CrMo for repair applications by laser directed energy deposition. J. Alloys Compd. 2024, 999, 175102. [Google Scholar] [CrossRef]
- Gamon, A.; Arrieta, E.; Gradl, P.R.; Katsarelis, C.; Murr, L.E.; Wicker, R.B.; Medina, F. Microstructure and hardness comparison of as-built inconel 625 alloy following various additive manufacturing processes. Results Mater. 2021, 12, 100239. [Google Scholar] [CrossRef]
- Cho, K.T.; Nunez, L.; Shelton, J.; Sciammarella, F. Investigation of Effect of Processing Parameters for Direct Energy Deposition Additive Manufacturing Technologies. J. Manuf. Mater. Process. 2023, 7, 105. [Google Scholar] [CrossRef]
- Romano, J.; Ladani, L.; Sadowski, M. Thermal Modeling of Laser Based Additive Manufacturing Processes within Common Materials. Procedia Manuf. 2015, 1, 238–250. [Google Scholar] [CrossRef]
- Ya, W.; Pathiraj, B.; Liu, S. 2D modelling of clad geometry and resulting thermal cycles during laser cladding. J. Mater. Process. Technol. 2016, 230, 217–232. [Google Scholar] [CrossRef]
- Caiazzo, F.; Alfieri, V. Simulation of Laser-assisted Directed Energy Deposition of Aluminum Powder: Prediction of Geometry and Temperature Evolution. Materials 2019, 12, 2100. [Google Scholar] [CrossRef]
- Ren, K.; Chew, Y.; Fuh, J.; Zhang, Y.F.; Bi, G.J. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater. Des. 2019, 162, 80–93. [Google Scholar] [CrossRef]
- INOPOWDERS. Material Data Sheet Ni Alloy Type 625 Powder—Batch No 17122501, 2023.
- Jinoop, A.; Paul, C.; Mishra, S.K.; Bindra, K.S. Laser Additive Manufacturing using directed energy deposition of Inconel-718 wall structures with tailored characteristics. Vacuum 2019, 166, 270–278. [Google Scholar] [CrossRef]
- DIN EN ISO 15708-3: 2024; Non Destructive Testing—Radiation Methods for Computed Tomography—Part 3 Operation and Interpretation. Beuth Verlag: Berlin, Germany, 2024.
- Völkl, R.; Fischer, B.; Beschliesser, M.; Glatzel, U. Evaluating strength at ultra-high temperatures—Methods and results. Mater. Sci. Eng. A 2008, 483, 587–589. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, Y.; Xiao, H.; Li, S.; Song, L. Investigation of the Nb element segregation for laser additive manufacturing of nickel-based superalloys. Int. J. Heat Mass Transf. 2021, 180, 121800. [Google Scholar] [CrossRef]
- Rombouts, M.; Maes, G.; Mertens, M.; Hendrix, W. Laser metal deposition of Inconel 625: Microstructure and mechanical properties. J. Laser Appl. 2012, 24, 052007. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Zhang, C.; Huang, Z.; Jia, M.; Shen, Q. Microstructures and mechanical behaviors of additive manufactured Inconel 625 alloys via selective laser melting and laser engineered net shaping. J. Alloys Compd. 2022, 917, 165572. [Google Scholar] [CrossRef]
- Nguejio, J.; Szmytka, F.; Hallais, S.; Tanguy, A.; Nardone, S.; Godino Martinez, M. Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625. Mater. Sci. Eng. A 2019, 764, 138214. [Google Scholar] [CrossRef]
- Trosch, T.; Strößner, J.; Völkl, R.; Glatzel, U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 2016, 164, 428–431. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Rogal, Ł.; Kalita, D.; Berent, K.; Antoszewski, B.; Danielewski, H.; Węglowski, M.S.; Łazińska, M.; Durejko, T.; Czujko, T. Microstructure and Properties of Inconel 625 Fabricated Using Two Types of Laser Metal Deposition Methods. Materials 2020, 13, 5050. [Google Scholar] [CrossRef]
- Zafar, F.; Emadinia, O.; Conceição, J.; Vieira, M.; Reis, A. A Review on Direct Laser Deposition of Inconel 625 and Inconel 625-Based Composites—Challenges and Prospects. Metals 2023, 13, 787. [Google Scholar] [CrossRef]
- Su, G.; Shi, Y.; Li, G.; Zhang, G.; Xu, Y. Highly-efficient additive manufacturing of Inconel 625 thin wall using hot-wire laser metal deposition: Process optimization, microstructure, and mechanical properties. Opt. Laser Technol. 2024, 175, 110763. [Google Scholar] [CrossRef]
Alloy | Cr | Mo | Nb | Fe | Ti | Si | Cu |
---|---|---|---|---|---|---|---|
625 | 22.0 | 9.0 | 3.7 | 1.1 | 0.03 | 0.14 | 0.06 |
Alloy | Al | Co | C | P | O | N | Ni |
625 | 0.1 | 0.007 | 0.008 | 0.005 | 0.016 | 0.15 | Bal. (63.7) |
Varied Parameter | Sample No. Laser Power_Scan Speed_Powder Feed Rate | Porosity ꓕ SD in % | Porosity || SD in % | Track Height in µm | Build Rate in g min−1 |
---|---|---|---|---|---|
Laser power | 1 500 W_8 mm s−1_4 g min−1 | 0.24 ± 0.04 | 0.27 ± 0.06 | 380 ± 20 | 1.7 |
2 (Optimized Parameter) 600 W_8 mm s−1_4 g min−1 | 0.16 ± 0.05 | 0.12 ± 0.03 | 410 ± 23 | 1.8 | |
3 700 W_8 mm s−1_4 g min−1 | 0.26 ± 0.1 | 0.26 ± 0.07 | 450 ± 25 | 2.0 | |
Feed rate | 4 600 W_8 mm s−1_6 g min−1 | 0.39 ± 0.1 | 0.36 ± 0.05 | 620 ± 33 | 2.8 |
5 600 W_8 mm s−1_8 g min−1 | 0.19 ± 0.03 | 0.14 ± 0.02 | 880 ± 36 | 3.9 | |
6 600 W_8 mm s−1_10 g min−1 | 0.76 ± 0.31 | 0.57 ± 0.25 | 1060 ± 62 | 4.7 | |
Scan speed, Feed rate | 7 600 W_8.8 mm s−1_4.4 g min−1 | 0.16 ± 0.03 | 0.17 ± 0.04 | 403 ± 32 | 1.8 |
8 600 W_9.6 mm s−1_4.8 g min−1 | 0.14 ± 0.06 | 0.15 ± 0.05 | 400 ± 24 | 1.7 | |
9 600 W_10.4 mm s−1_5.2 g min−1 | 0.22 ± 0.09 | 0.17 ± 0.03 | 380 ± 33 | 1.9 | |
Laser power, Scan speed, Feed rate | 10 660 W_8.8 mm s−1_4.4 g min−1 | 0.18 ± 0.03 | 0.09 ± 0.04 | 425 ± 30 | 1.85 |
11 720 W_9.6 mm s−1_4.8 g min−1 | 0.11 ± 0.03 | 0.19 ± 0.04 | 415 ± 13 | 1.9 | |
12 780 W_10.4 mm s−1_5.2 g min−1 | 0.22 ± 0.05 | 0.26 ± 0.08 | 430 ± 23 | 2.0 |
Ultimate Tensile Strength in MPa | Elongation to Failure in % | Yield Strength in MPa | Porosity in % | ||
---|---|---|---|---|---|
S ↑↑ | ꓕ | 817 ± 24 | 38.6 ± 1.5 | 556 ± 17 | 0.39 ± 0.05 |
|| | 915 ± 24 | 30.2 ± 2.0 | 624 ± 29 | 0.32 ± 0.06 | |
O ↑↑ | ꓕ | 896 ± 9 | 40.4 ± 2.1 | 598 ± 12 | 0.49 ± 0.04 |
|| | 998 ± 29 | 32.3 ± 2.7 | 674 ± 30 | 0.38 ± 0.05 | |
O ↑↓ | ꓕ | 936 ± 23 | 31.7 ± 2.9 | 667 ± 14 | 0.22 ± 0.04 |
|| | 1001 ± 19 | 30.7 ± 3.1 | 711 ± 27 | 0.24 ± 0.04 | |
LMD [28] | ꓕ | 882 ± 7 | 36 ± 5 | 480 ± 20 | - |
|| | 1000 ± 10 | 24 ± 5 | 656 ± 14 | - | |
LENS [29] | ꓕ | 835 ± 5 | 43 ± 1.2 [28] | 492 ± 5 | - |
|| | 882 ± 7 | 30 ± 2 | 598 ± 7 | - | |
Wrought alloy [30] | 955 ± 6 | 41 ± 1 | 482 ± 42 | - |
Scan Strategy | Stacked Unidirectional | Offset Unidirectional | Offset Bidirectional | |||
---|---|---|---|---|---|---|
Direction | ꓕ | || | ꓕ | || | ꓕ | || |
Grain size in load direction in µm | 228 ± 38 | 188 ± 7 | 118 ± 14 | 119 ± 8 | 111 ± 10 | 88 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherm, F.; Daoud, H.; Glatzel, U. Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p). Metals 2024, 14, 1041. https://doi.org/10.3390/met14091041
Scherm F, Daoud H, Glatzel U. Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p). Metals. 2024; 14(9):1041. https://doi.org/10.3390/met14091041
Chicago/Turabian StyleScherm, Florian, Haneen Daoud, and Uwe Glatzel. 2024. "Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p)" Metals 14, no. 9: 1041. https://doi.org/10.3390/met14091041
APA StyleScherm, F., Daoud, H., & Glatzel, U. (2024). Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p). Metals, 14(9), 1041. https://doi.org/10.3390/met14091041