Investigation of the Heat Treatment Regimes on the Structure and Microhardness of Laser Direct Energy Deposition Aluminum Alloy AlSi10Mg
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. L-DED
2.3. Heat Treatment
2.4. Structural and Phase Analysis
2.5. Mechanical Testing
3. Results and Discussion
3.1. As-Built Sample
3.2. Solution Annealing
3.3. Artificial Aging
4. Conclusions
- The structure of the alloy in the initial state is a eutectic-type structure, α-Al + Si. The morphology of the eutectic network is non-uniform and changes across the section of the cladded bead. The average grain size at the top of the cladded beads was 60 μm, that at the cladded bead boundaries was 15 μm, and that at the bottom of the cladded beads was 74 μm. The microhardness of the alloy is 58 HV.
- As a result of solution annealing, it was possible to bring the structure to a more uniform state: the developed network of eutectic plates transforms into separate spherical inclusions. The minimum size of such inclusions was achieved with the 500 °C, 30 min regime and is 0.71 µm2. This regime does not lead to grain growth (the average grain size at the top of the cladded beads was 62 μm, that at the cladded bead boundaries was 15 μm, and that at the bottom of the cladded beads was 85 μm) or to a significant decrease in microhardness (the microhardness was 50 HV).
- As a result of artificial aging, it was possible to achieve a significant increase in microhardness to 90 HV with the 190 °C, 6 h regime. This value is 55% higher than the value in the initial state and 80% higher than the SA state. It has been proven that the increase in microhardness is associated with the formation of nanoscale inclusions β″ (Mg5Si6).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Liu, Y.; Siddique, Z.; Ghamarian, I. Metal additive manufacturing: Principles and applications. J. Manuf. Process. 2024, 131, 1179–1201. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, D.; Lau, S.-F.; Srivastava, P.; Ghosh, A.; Ding, C.-F. A critical review of process monitoring for laser-based additive manufacturing. Adv. Eng. Inform. 2024, 62 Pt D, 102932. [Google Scholar] [CrossRef]
- Wu, X.; Yan, H.; Zhou, Y.; Zhang, P.; Lu, Q.; Shi, H. Review of additive manufactured metallic metamaterials: Design, fabrication, property and application. Opt. Laser Technol. 2025, 182 Pt A, 112066. [Google Scholar] [CrossRef]
- Kong, Z.; Wang, X.; Hu, N.; Jin, Y.; Tao, Q.; Xia, W.; Lin, X.-M.; Vasdravellis, G. Mechanical properties of SLM 316 L stainless steel plate before and after exposure to elevated temperature. Constr. Build. Mater. 2024, 444, 137786. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, F.; Cao, S. Effects of longitudinal alternating magnetic field on the microstructure and properties of CMT WAAM Al-5 %Mg alloy. Mater. Today Commun. 2024, 41, 110272. [Google Scholar] [CrossRef]
- Evstifeev, A.; Volosevich, D.; Smirnov, I.; Yakupov, B.; Voropaev, A.; Vitokhin, E.; Klimova-Korsmik, O. Comparative study of the relationship between microstructure and mechanical properties of aluminum alloy 5056 Fabricated by additive manufacturing and rolling techniques. Materials 2023, 16, 4327. [Google Scholar] [CrossRef]
- Shahwaz, M.; Nath, P.; Sen, I. Recent advances in additive manufacturing technologies for Ni-based Inconel superalloys—A comprehensive review. J. Alloys Compd. 2024, 177654. [Google Scholar] [CrossRef]
- Srivastava, M.; Jayakumar, V.; Udayan, Y.; Sathishkumar, M.; Muthu, S.M.; Gautam, P.; Nag, A. Additive manufacturing of titanium alloy for aerospace applications: Insights into the process, microstructure, and mechanical properties. Appl. Mater. Today 2024, 41, 102481. [Google Scholar] [CrossRef]
- Li, K.; Yang, T.; Gong, N.; Wu, J.; Wu, X.; Zhang, D.Z.; Murr, L.E. Additive manufacturing of ultra-high strength steels: A review. J. Alloys Compd. 2023, 965, 171390. [Google Scholar] [CrossRef]
- Song, X.; Fu, B.; Chen, X.; Zhang, J.; Liu, T.; Yang, C.; Ye, Y. Effect of internal defects on tensile strength in SLM additively-manufactured aluminum alloys by simulation. Chin. J. Aeronaut. 2023, 36, 485–497. [Google Scholar] [CrossRef]
- Artem, V.I.; Alexandr, M.P.; Elena, M.S.; Tatyana, V.T. Tensile and torsion tests of cylindrical specimens of aluminum alloy ASP35 obtained by the SLM method. Procedia Struct. Integr. 2023, 50, 113–118. [Google Scholar] [CrossRef]
- Cabrera-Correa, L.; González-Rovira, L.; de Dios López-Castro, J.; Botana, F.J. Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM). Corros. Sci. 2022, 201, 110273. [Google Scholar] [CrossRef]
- Mäkikangas, J.; Rautio, T.; Mustakangas, A.; Mäntyjärvi, K. Laser welding of AlSi10Mg aluminium-based alloy produced by Selective Laser Melting (SLM). Procedia Manuf. 2019, 36, 88–94. [Google Scholar] [CrossRef]
- Wang, A.; Wei, Q.; Tang, Z.; Oliveira, J.P.; Leung, C.L.A.; Ren, P.; Zhang, X.; Wu, Y.; Wang, H.; Wang, H. Effects of hatch spacing on pore segregation and mechanical properties during blue laser directed energy deposition of AlSi10Mg. Addit. Manuf. 2024, 85, 104147. [Google Scholar] [CrossRef]
- Shi, S.; Lin, X.; Wang, L.; Wang, Z.; Wei, L.; Yang, H.; Tang, Y.; Huang, W. Investigations of the processing–structure–performance relationships of an additively manufactured AlSi10Mg alloy via directed energy deposition. J. Alloys Compd. 2023, 944, 169050. [Google Scholar] [CrossRef]
- Yan, Q.; Song, B.; Shi, Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J. Mater. Sci. Technol. 2020, 41, 199–208. [Google Scholar] [CrossRef]
- Mei, J.; Han, Y.; Sun, J.; Jiang, M.; Zu, G.; Song, X.; Zhu, W.; Ran, X. Improving the comprehensive mechanical property of the AlSi10Mg alloy via parameter adaptation of selective laser melting and heat treatment. J. Alloys Compd. 2024, 981, 173623. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Z.; Xiong, R.; Ren, G.; Yao, M.; Liu, W.; Zang, L. Effect of post heat treatment on microstructure, mechanical property and corrosion behavior of AlSi10Mg alloy fabricated by selective laser melting. Prog. Nat. Sci. Mater. Int. 2024, 34, 89–101. [Google Scholar] [CrossRef]
- Syrlybayev, D.; Perveen, A.; Talamona, D. Controlling mechanical properties and energy absorption in AlSi10Mg lattice structures through solution and aging heat treatments. Mater. Sci. Eng. A 2024, 889, 145843. [Google Scholar] [CrossRef]
- Eremeev, A.D.; Volosevich, D.V. Study of the formation of the structure of laser tracks during laser growing from AlSi10Mg alloy powder. Photonics Russ. 2021, 7, 558–566. [Google Scholar] [CrossRef]
- GOST 23402-78; Metal Powders. Microscopic Method for Particle Size Determination. Standards Publishers: Moscow, Russia, 1978.
- GOST 25849-83; Metal Powders. Method for Determination of Particle Shape. Standards Publishers: Moscow, Russia, 1983.
- Di Egidio, G.; Ceschini, L.; Morri, A.; Martini, C.; Merlin, M. A novel T6 rapid heat treatment for AlSi10Mg alloy produced by Laser-Based Powder Bed Fusion: Comparison with T5 and conventional T6 heat treatments. Met. Mater Trans B 2022, 53, 284–303. [Google Scholar] [CrossRef]
- GOST 1497-2023; Metals. Tensile Test Methods. Standards Publishers: Moscow, Russia, 2023.
- Mertens, A.; Delahaye, J.; Dedry, O.; Vertruyen, B.; Tchuindjang, J.T.; Habraken, A.M. Microstructure and properties of SLM AlSi10Mg: Understanding the influence of the local thermal history. Procedia Manuf. 2020, 47, 1089–1095. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, W.; Shan, Z.; Song, W.; Dong, X. Squeeze casting of 4032 aluminum alloy and the synergetic enhancement of strength and ductility via Al-Ti-Nb-B grain refiner. Mater. Sci. Eng. A 2024, 896, 146233. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, T.; Li, F.; Chen, G.; Guo, Z.; Yuan, D.; Chen, S.; Chen, K. The effect of inhomogeneous microstructures on strength and stress corrosion cracking of 7085 aluminum alloy thick plate. J. Mater. Res. Technol. 2024, 30, 6163–6175. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Gao, L.; Zhang, T.; Zhang, Z.; Wang, Q.; Zhang, X. Low-cycle fatigue behaviour of extruded 7075 aluminium alloy bar: Competition of grain sizes and textures. Mater. Sci. Eng. A 2024, 897, 146258. [Google Scholar] [CrossRef]
- Tabatabaei, N.; Zarei-Hanzaki, A.; Moshiri, A.; Abedi, H.R. The effect of heat treatment on the room and high temperature mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J. Mater. Res. Technol. 2023, 23, 6039–6053. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Wei, P.; Chen, Z.; Zhang, S.; Fang, X.; Lu, B.; Zhang, L.; Wei, Z. Effect of T6 heat treatment on the surface tribological and corrosion properties of AlSi10Mg samples produced by selective laser melting. Mater. Charact. 2021, 171, 110769. [Google Scholar] [CrossRef]
Chemical Element | Mg | Si | Al | Fe |
---|---|---|---|---|
Value | 0.32 | 10.52 | 89.11 | 0.05 |
Standard deviation | 0.05 | 0.57 | 0.59 | 0.02 |
Parameter | Value |
---|---|
Yield strength σYS, MPa | 140 ± 9 |
Ultimate strength σUTS, Mpa | 237 ± 4 |
Elongation δ, % | 7.9 ± 0.9 |
500 °C | 520 °C | 540 °C | |
---|---|---|---|
30 min | 0.71 ± 0.12 | 1.00 ± 0.16 | 1.41 ± 0.12 |
60 min | 1.02 ± 0.20 | 1.06 ± 0.14 | 1.60 ± 0.15 |
90 min | 1.49 ± 0.17 | 1.49 ± 0.10 | 1.80 ± 0.13 |
120 min | 2.08 ± 0.21 | 2.02 ± 0.21 | 2.30 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volosevich, D.; Shabunina, Z.; Yurchenko, N.; Mendagaliev, R.; Slatenko, E.; Klimov, G.; Klimova-Korsmik, O.; Eremeev, A. Investigation of the Heat Treatment Regimes on the Structure and Microhardness of Laser Direct Energy Deposition Aluminum Alloy AlSi10Mg. Metals 2025, 15, 92. https://doi.org/10.3390/met15010092
Volosevich D, Shabunina Z, Yurchenko N, Mendagaliev R, Slatenko E, Klimov G, Klimova-Korsmik O, Eremeev A. Investigation of the Heat Treatment Regimes on the Structure and Microhardness of Laser Direct Energy Deposition Aluminum Alloy AlSi10Mg. Metals. 2025; 15(1):92. https://doi.org/10.3390/met15010092
Chicago/Turabian StyleVolosevich, Darya, Zhanna Shabunina, Nikita Yurchenko, Ruslan Mendagaliev, Edem Slatenko, Georgii Klimov, Olga Klimova-Korsmik, and Aleksey Eremeev. 2025. "Investigation of the Heat Treatment Regimes on the Structure and Microhardness of Laser Direct Energy Deposition Aluminum Alloy AlSi10Mg" Metals 15, no. 1: 92. https://doi.org/10.3390/met15010092
APA StyleVolosevich, D., Shabunina, Z., Yurchenko, N., Mendagaliev, R., Slatenko, E., Klimov, G., Klimova-Korsmik, O., & Eremeev, A. (2025). Investigation of the Heat Treatment Regimes on the Structure and Microhardness of Laser Direct Energy Deposition Aluminum Alloy AlSi10Mg. Metals, 15(1), 92. https://doi.org/10.3390/met15010092