Development of a Finite Element Model for the HAZ Temperature Field in Longitudinal Welding of Pipeline Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Modeling and Calibration
3.1. Modeling
3.2. Multi-Scale Calibration Based on Crystallographic Information
4. Validation and Discussion
5. Conclusions
- A multi-layer volumetric heat source coupling logic was proposed, enabling the accurate simulation of complex welding scenarios, effectively addressing the limitations of traditional models.
- An innovative multi-scale calibration and validation approach based on crystallography was developed. This methodology, combining weld interface identification, Ac1 temperature location, and PAG reconstruction, achieved high accuracy, with results showing deviations within ±0.3 mm for Ac1 locations and less than 9 μm for PAG size.
- PAG reconstruction was innovatively applied to validate the welding temperature field, providing detailed insights into thermal cycling effects and confirming themodel’s reliability.
- The heat source model serves as a reliable alternative to traditional thermal simulation methods, producing specimens that accurately represent real welding conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Material Properties Used in the FEA
References
- Yu, Y.; Xu, J.; Chai, T.; Liu, B.; Sun, C. Stress corrosion of HAZ subdivision of X80 pipeline steel in sterile high-sulfate soil. J. Mater. Res. Technol. 2023, 26, 8229–8241. [Google Scholar] [CrossRef]
- Maia, P.P.; Miná, É.M.; Dalpiaz, G.; Marinho, R.R.; Paes, M.T.; Motta, M.F.; de Miranda, H.C.; Silva, C.C. Microstructural characterisation and micromechanical investigation of the heat-affected zone in multi-pass welding of 9Ni steel pipes. J. Mater. Res. Technol. 2023, 24, 1716–1732. [Google Scholar] [CrossRef]
- Jiang, J.; Peng, Z.Y.; Ye, M.; Wang, Y.B.; Wang, X.; Bao, W. Thermal effect of welding on mechanical behavior of high-strength steel. J. Mater. Civ. Eng. 2021, 33, 04021186. [Google Scholar] [CrossRef]
- Bao, L.; Wang, Y.; Han, T. Study on microstructure-toughness relationship in heat affected zone of EQ70 steel by laser-arc hybrid welding. Mater. Charact. 2021, 171, 110788. [Google Scholar] [CrossRef]
- Han, Y.; Fei, J.; Xin, P.; Wang, R.; Jing, H.; Zhao, L.; Xu, L. Microstructure and properties of intercritically reheated coarse-grained heat affected zone in pipeline steel after secondary thermal cycle. Int. J. Hydrog. Energy 2021, 46, 26445–26456. [Google Scholar] [CrossRef]
- Singh, M.P.; Shukla, D.K.; Kumar, R.; Arora, K.S. The structural integrity of high-strength welded pipeline steels: A review. Int. J. Struct. Integr. 2021, 12, 470–496. [Google Scholar] [CrossRef]
- Li, W.; Feng, A.; Wang, Y.; Wang, J. Effect of laser welding parameters on the microstructure and tensile properties of low-alloy high-strength steel. Mater. Res. Express 2024, 11, 096526. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Y.; Cao, J.; Shen, J.; dos Santos, J.F. Recent progress on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci. 2021, 115, 100706. [Google Scholar] [CrossRef]
- Obeid, O.; Leslie, A.J.; Olabi, A.G. Influence of girth welding material on thermal and residual stress fields in welded lined pipes. Int. J. Press. Vessel. Pip. 2022, 200, 104777. [Google Scholar] [CrossRef]
- Sirin, K.; Sirin, S.Y.; Kaluc, E. Influence of the interpass temperature on t8/5 and the mechanical properties of submerged arc welded pipe. J. Mater. Process. Technol. 2016, 238, 152–159. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Li, X.; Du, C.; Cui, Z. Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater. Sci. Eng. A 2019, 759, 124–141. [Google Scholar] [CrossRef]
- da Silva, L.O.P.; Lima, T.N.; Júnior, F.M.D.S.; Callegari, B.; Folle, L.F.; Coelho, R.S. Heat-Affected Zone Microstructural Study via Coupled Numerical/Physical Simulation in Welded Superduplex Stainless Steels. Crystals 2024, 14, 204. [Google Scholar] [CrossRef]
- Afkhami, S.; Javaheri, V.; Amraei, M.; Skriko, T.; Piili, H.; Zhao, X.L.; Björk, T. Thermomechanical simulation of the heat-affected zones in welded ultra-high strength steels: Microstructure and mechanical properties. Mater. Des. 2022, 213, 110336. [Google Scholar] [CrossRef]
- Mičian, M.; Harmaniak, D.; Nový, F.; Winczek, J.; Moravec, J.; Trško, L. Effect of the t 8/5 Cooling Time on the Properties of S960MC Steel in the HAZ of Welded Joints Evaluated by Thermal Physical Simulation. Metals 2020, 10, 229. [Google Scholar] [CrossRef]
- Lee, J. Comparison of Mechanical Properties Between HSS Gleeble Simulated Specimen and Welded Specimen. Bachelor’s Thesis, Mechanical Engineering and Production Technology, Riihimäki, Finland, 2022. [Google Scholar]
- Hekmatjou, H.; Zeng, Z.; Shen, J.; Oliveira, J.P.; Naffakh-Moosavy, H. A comparative study of analytical Rosenthal, finite element, and experimental approaches in laser welding of AA5456 alloy. Metals 2020, 10, 436. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.-K.; Hu, P.; Liu, M.-B. Discrepancies between Gaussian surface heat source model and ray tracing heat source model for numerical simulation of selective laser melting. Comput. Mech. 2023, 71, 599–613. [Google Scholar] [CrossRef]
- Flint, T.; Francis, J.; Smith, M.; Balakrishnan, J. Extension of the double-ellipsoidal heat source model to narrow-groove and keyhole weld configurations. J. Mater. Process. Technol. 2017, 246, 123–135. [Google Scholar] [CrossRef]
- Jiao, H.; Jin, H. An automated optimization procedure for geometry parameters calibration of two-curvature conical heat source model. Int. J. Therm. Sci. 2024, 197, 108788. [Google Scholar] [CrossRef]
- Giudice, F.; Sili, A. Validation of a theoretical model for laser welding thermal field by multi-physics numerical simulation. Metals 2023, 13, 2020. [Google Scholar] [CrossRef]
- Schauenberg, A.S.; Rodríguez, R.Q.; Almeida, D.T.; Zanon, J.E.; Cunha, E.; Lopes, A.P.; Tonatto, M.L. Evaluating thermal gradient in GMAW welding process with a novel heat source model: Numerical and experimental approach. Eng. Struct. 2024, 318, 118724. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, H.; Guo, J.; Li, Z.; Xiao, A.; Liu, Y. Analysis of cooling effects and measurement errors in water-cooled thermocouples for total temperature measurement in aviation engine combustion chambers. Int. J. Therm. Sci. 2024, 205, 109290. [Google Scholar] [CrossRef]
- Leonidas, E.; Ayvar-Soberanis, S.; Laalej, H.; Fitzpatrick, S.; Willmott, J.R. A Comparative Review of Thermocouple and Infrared Radiation Temperature Measurement Methods during the Machining of Metals. Sensors 2022, 22, 4693. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, X.; Ma, Y.; Wang, P.; Zhu, F.; Yang, H.; Wang, C.; Wang, S. Effect of Nb on microstructure and mechanical properties between base metal and high heat input coarse-grain HAZ in a Ti-deoxidized low carbon high strength steel. J. Mater. Res. Technol. 2022, 18, 2399–2412. [Google Scholar] [CrossRef]
- Furumai, K.; Wang, X.; Zurob, H.; Phillion, A. Evaluating the effect of the competition between NbC precipitation and grain size evolution on the hot ductility of Nb containing steels. ISIJ Int. 2019, 59, 1064–1071. [Google Scholar] [CrossRef]
- Huang, H.; Yang, G.; Zhao, G.; Mao, X.; Gan, X.; Yin, Q.; Yi, H. Effect of Nb on the microstructure and properties of Ti-Mo microalloyed high-strength ferritic steel. Mater. Sci. Eng. A 2018, 736, 148–155. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Wu, S. A new heat source model in numerical simulation of high energy beam welding. Trans. China Weld. Inst. 2004, 25, 91–94. [Google Scholar]
- Wu, Q.; He, S.; Hu, P.; Liu, Y.; Zhang, Z.; Fan, C.; Fan, R.; Zhong, N. Effect of finish rolling temperature on microstructure and mechanical properties of X80 pipeline steel by on-line quenching. Mater. Sci. Eng. A 2023, 862, 144496. [Google Scholar] [CrossRef]
- Liang, S.; Fazeli, F.; Zurob, H.S. Effects of solutes and temperature on high-temperature deformation and subsequent recovery in hot-rolled low alloy steels. Mater. Sci. Eng. A 2019, 765, 138324. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Nguyen, A.X.; Nguyen, D.T.; Le, H.C. A Comprehensive Understanding of Bainite Phase Transformation Mechanism in TRIP Bainitic-supported Ferrite Steel. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 309–325. [Google Scholar] [CrossRef]
- Haghdadi, N.; Cizek, P.; Hodgson, P.D.; Tari, V.; Rohrer, G.S.; Beladi, H. Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel. Acta Mater. 2018, 145, 196–209. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Li, X.; Shang, C. Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel. Int. J. Miner. Metall. Mater. 2024, 31, 1298–1310. [Google Scholar] [CrossRef]
- Taylor, M.; Smith, A.D.; Donoghue, J.M.; Burnett, T.L.; Pickering, E.J. In-situ heating-stage EBSD validation of algorithms for prior-austenite grain reconstruction in steel. Scr. Mater. 2024, 242, 115924. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Zhu, M.; Tian, J.; Su, X.; Zhang, Q.; Guo, A.; Xu, G. New insights to the metallurgical mechanism of niobium in high-carbon pearlitic steels. J. Mater. Res. Technol. 2023, 26, 1609–1623. [Google Scholar] [CrossRef]
- Gong, P.; Palmiere, E.; Rainforth, W. Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing. Acta Mater. 2015, 97, 392–403. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, C.; Li, Z.; Zhai, Y.; Wang, J.; Li, Z. Effect of Nb content and thermal deformation on the microstructure and mechanical properties of high-strength anti-seismic rebar. Mater. Sci. Eng. A 2022, 840, 142929. [Google Scholar] [CrossRef]
Steels | C | Mn | Si | Ni | Cr | Ac1 (°C) | Ac3 (°C) | Nb |
---|---|---|---|---|---|---|---|---|
Calibration | 0.05 | 1.7 | 0.2 | 0.15 | 0.25 | 831 | 880 | - |
Validation (Steel 1) | 0.05 | 1.7 | 0.2 | 0.15 | 0.25 | - | - | 0.058 |
Validation (Steel 2) | 0.05 | 1.7 | 0.2 | 0.15 | 0.25 | - | - | 0.091 |
Current (A) | Voltage (V) | Polarity | Diameter (mm) | Heat-Input (kJ/cm) | Speed (m/min) |
---|---|---|---|---|---|
1000 | 33 | DCEP | 4.0 | 9.9 | 1.7 |
800 | 37 | AC | 4.0 | 8.9 | |
700 | 42 | AC | 4.0 | 8.8 | |
600 | 42 | AC | 3.5 | 7.6 | |
Welding parameters ranges | Current: ±10%; Voltage: ±7%; Speed: ±10%; Heat input: ±10%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shang, C.; Wang, X. Development of a Finite Element Model for the HAZ Temperature Field in Longitudinal Welding of Pipeline Steel. Metals 2025, 15, 91. https://doi.org/10.3390/met15010091
Wang Z, Shang C, Wang X. Development of a Finite Element Model for the HAZ Temperature Field in Longitudinal Welding of Pipeline Steel. Metals. 2025; 15(1):91. https://doi.org/10.3390/met15010091
Chicago/Turabian StyleWang, Zhixing, Chengjia Shang, and Xuelin Wang. 2025. "Development of a Finite Element Model for the HAZ Temperature Field in Longitudinal Welding of Pipeline Steel" Metals 15, no. 1: 91. https://doi.org/10.3390/met15010091
APA StyleWang, Z., Shang, C., & Wang, X. (2025). Development of a Finite Element Model for the HAZ Temperature Field in Longitudinal Welding of Pipeline Steel. Metals, 15(1), 91. https://doi.org/10.3390/met15010091