Research Progress on Development of PVP-Ag-Doped LaMnO3 Composites for Methyl Orange Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of PVP-Perovskite Composites
2.3. Characterization of Composite Materials
2.4. Degradation of Methyl Orange
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM Analysis
3.3. FT-IR Analysis
3.4. Raman Analysis
3.5. AFM Analysis
3.6. Degradation of Methyl Orange
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Garba, Z.N.; Zhou, W.; Zhang, M.; Yuan, Z. A review on the preparation, characterization and potential application of perovskites as adsorbents for wastewater treatment. Chemosphere 2020, 244, 125474. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z.; Chen, P.; Zhou, G.; Liu, Z.; Xu, Y. Preparation of Supported Perovskite Catalyst to Purify Membrane Concentrate of Coal Chemical Wastewater in UV-Catalytic Wet Hydrogen Peroxide Oxidation System. Int. J. Environ. Res. Public Health 2021, 18, 4906. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; Lodh, B.K.; Sharma, R.; Mahata, N.; Shah, M.P.; Mandal, S.; Ghanta, S.; Bhunia, B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. Chemosphere 2023, 345, 140473. [Google Scholar] [CrossRef] [PubMed]
- Dhariwal, S.; Mittal, M. Wastewater treatment with perovskite-based photocatalysts: Environmental sustainability from a green perspective. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Borah, P.; Kumar, M.; Devi, P. Recent trends in the detection and degradation of organic pollutants. In Abatement of Environmental Pollutants, 1st ed.; Singh, P., Kumar, A., Borthakur, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–79. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.V.; Ahmed, A.; Boedicker, J.R.; Eliwa, E.M.; Moneam, I.A.; Elseman, A.M.; Mohamed, G.G.; Mohamed, M.M.; Salama, T.M. Water treatment by perovskite materials and their applications: A comprehensive review. J. Ind. Eng. Chem. 2024, in press. [Google Scholar] [CrossRef]
- Mehdizadeh, P.; Amiri, O.; Rashki, S.; Salavati-Niasari, M.; Salimian, M.; Foong, L.K. Effective removal of organic pollution by using sonochemical prepared LaFeO3 perovskite under visible light. Ultrason. Sonochem. 2020, 61, 104848. [Google Scholar] [CrossRef]
- Arif, A.; Aziz, F.; Sokri, M.N.M.; Sahimi, M.S.; Yahya, N.; Jaafar, J.; Salleh, W.N.W.; Yusof, N.; Ismail, A.F. Photocatalytic degradation of phenol by LaFeO3 nanocrystalline synthesized by gel combustion method via citric acid route. SN Appl. Sci. 2019, 1, 91. [Google Scholar] [CrossRef]
- Sfirloaga, P.; Ivanovici, M.-G.; Poienar, M.; Ianasi, C.; Vlazan, P. Investigation of Catalytic and Photocatalytic Degradation of Methyl Orange Using Doped LaMnO3 Compounds. Processes 2022, 10, 2688. [Google Scholar] [CrossRef]
- Dumitru, R.; Ianculescu, A.; Păcurariu, C.; Lupa, L.; Pop, A.; Vasile, B.; Surdu, A.; Manea, F. BiFeO3-synthesis, characterization and its photocatalytic activity towards doxorubicin degradation from water. Ceram. Int. 2019, 45, 2789–2802. [Google Scholar] [CrossRef]
- Huerta-Flores, A.M.; Sánchez-Martínez, D.; del Rocío Hernández-Romero, M.; Zarazúa-Morín, M.E.; Torres-Martínez, L.M. Visible-light-driven BaBiO3 perovskite photocatalysts: Effect of physicochemical properties on thephotoactivity towards water splitting and the removal of rhodamine B from aqueous systems. J. Photochem. Photobiol. A Chem. 2019, 368, 70–77. [Google Scholar] [CrossRef]
- Safari, S.; Ahmadian, S.M.S.; Amani-Ghadim, A.R. Visible lightphotocatalytic activity enhancing of MTiO3 perovskites by M cation (M = Co, Cu, and Ni) substitution and Gadolinium doping. J. Photochem. Photobiol. A Chem. 2020, 394, 112461. [Google Scholar] [CrossRef]
- Jiang, J.; Jia, Y.; Wang, Y.; Chong, R.; Xu, L.; Liu, X. Insight into efficientphotocatalytic elimination of tetracycline over SrTiO3(La, Cr) under visible light irradiation: The relationship of doping and performance. Appl. Surf. Sci. 2019, 486, 93–101. [Google Scholar] [CrossRef]
- Di, J.; Zhong, M.; Wang, Y. Polyvinylpyrrolidone/polyvinyl alcohol blends modification on light absorbing layer to improve the efficiency and stability of perovskite solar cells. Mater. Sci. Semicond. Process. 2021, 133, 105941. [Google Scholar] [CrossRef]
- Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 2018, 9, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Venditto, V.; Vaiano, V.; Sacco, O. Monolithic Porous Organic Polymer-Photocatalyst Composites for Applications in Catalysis. ChemCatChem 2024, 16, e202301118. [Google Scholar] [CrossRef]
- Bathula, C.; Naik, S.; Jana, A.; Palem, R.R.; Singh, A.N.; Hatshan, M.R.; Mane, S.D.; Kim, H.S. Polymer Backbone Stabilized Methylammonium Lead Bromide Perovskite Nano Islands. Nanomaterials 2023, 13, 2750. [Google Scholar] [CrossRef] [PubMed]
- Samu, G.F.; Scheidt, R.A.; Kamat, P.V.; Janáky, C. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions. Chem. Mater. 2018, 30, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Mollick, S.; Mandal, T.N.; Jana, A.; Fajal, S.; Desai, A.V.; Ghosh, S.K. Ultrastable Luminescent Hybrid Bromide Perovskite@MOF Nanocomposites for the Degradation of Organic Pollutants in Water. ACS Appl. Nano Mater. 2019, 2, 1333–1340. [Google Scholar] [CrossRef]
- Xian, T.; Yang, H.; Di, L.J.; Dai, J.F. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J. Alloys Compd. 2015, 622, 1098–1104. [Google Scholar] [CrossRef]
- Leong, K.H.; Tan, Z.Z.; Sim, L.C.; Saravanan, P.; Bahnemann, D.; Jang, M. Symbiotic Interaction of Amalgamated Photocatalysts with Improved Day Light Utilisation and Charge Separation. ChemistrySelect. 2017, 2, 84–89. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Airoudj, A.; Morlet-Savary, F.; Raveau, B.; Bousselmi, L.; Lalevée, J. New hybrid perovskites/polymer composites for the photodegradation of organic dyes. Eur. Polym. J. 2021, 157, 110641. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Ai, L.; Liu, M.; Wang, Y. Polymer-Based Immobilized FePMo12O40@PVP Composite Materials for Photocatalytic RhB Degradation. Inorganics 2024, 12, 144. [Google Scholar] [CrossRef]
- Deng, Z.; Li, Y.; Zheng, X.; Guo, Y. Photocatalytic activity evaluation of polyvinylpyrrolidone K30 assisted synthesis of 1D oxygen-vacancy-rich Bi5O7BrxI1-x nanorod solid solution. J. Hazard. Mater. 2024, 465, 133361. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Du, X.; Hua, F.; Gu, Y.; Li, M.; Tang, T. PVP Passivatedδ-CsPbI3: Vacancy Induced Visible-Light Absorption and Efficient Photocatalysis. Molecules 2024, 29, 1670. [Google Scholar] [CrossRef]
- Memon, K.; Memon, R.; Khalid, A.; Al-Anzi, B.S.; Uddin, S.; Sherazi, S.T.H.; Chandio, A.; Talpur, F.N.; Latif, A.A.; Liaqat, I. Synthesis of PVP-capped trimetallic nanoparticles and their efficient catalytic degradation of organic dyes. RSC Adv. 2023, 13, 29270–29282. [Google Scholar] [CrossRef]
- Qing, Q.; Chen, S.-Y.; Hu, S.-Z.; Li, L.; Huang, T.; Zhang, N.; Wang, Y. Highly Efficient Photocatalytic Degradation of Organic Pollutants Using a Polyvinylidene Fluoride/Polyvinylpyrrolidone-Cuprous Oxide Composite Membrane. Langmuir 2024, 40, 1447–1460. [Google Scholar] [CrossRef]
- Shakiyeva, T.V.; Dossumova, B.T.; Sassykova, L.R.; Ilmuratova, M.S.; Dzhatkambayeva, U.N.; Abildin, T.S. Study of the Oxidation of Phenol in the Presence of a Magnetic Composite Catalyst CoFe2O4/Polyvinylpyrrolidone. Appl. Sci. 2024, 14, 8907. [Google Scholar] [CrossRef]
- Li, H.; Wang, N.; Li, H.; Ren, Z.; Ma, W.; Li, J.; Du, Y.; Xu, Q. Polyvinylpyrrolidone-induced size-dependent catalytic behavior of Fe sites on N-doped carbon substrate and mechanism conversion in Fenton-like oxidation reaction. Appl. Catal. B-Environ. 2024, 341, 123323. [Google Scholar] [CrossRef]
- Baganizi, D.R.; Nyairo, E.; Duncan, S.A.; Singh, S.R.; Dennis, V.A. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. Nanomaterials 2017, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Mireles, L.K.; Wu, M.-R.; Saadeh, N.; Yahia, L.; Sacher, E. Physicochemical Characterization of Polyvinyl Pyrrolidone: A Tale of Two Polyvinyl Pyrrolidones. ACS Omega 2020, 5, 30461–30467. [Google Scholar] [CrossRef]
- Safo, I.A.; Werheid, M.; Dosche, C.; Oezaslan, M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 2019, 1, 3095. [Google Scholar] [CrossRef]
- Song, Y.-J.; Wang, M.; Zhang, Y.-Y.; Wu, J.-Y.; Zhang, T. Investigation of the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires. Nanoscale Res. Lett. 2014, 9, 17. [Google Scholar] [CrossRef]
- Kim, J.H.; Min, B.R.; Kim, C.K.; Won, J.; Kang, Y.S. Spectroscopic Interpretation of Silver Ion Complexation with Propylene in Silver Polymer Electrolytes. J. Phys. Chem. B 2002, 106, 2786–2790. [Google Scholar] [CrossRef]
- Bryaskova, R.; Daniela Pencheva, D.; Nikolov, S.; Kantardjiev, T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol. 2011, 4, 185–191. [Google Scholar] [CrossRef]
- Yoshida, M.; Prasad, P.N. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials. Appl. Opt. 1996, 35, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Borodko, Y.; Habas, S.E.; Koebel, M.; Yang, P.; Frei, H.; Somorjai, G.A. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 2006, 110, 23052–23059. [Google Scholar] [CrossRef]
- Borodko, Y.; Lee, H.S.; Joo, S.H.; Zhang, Y.; Somorjai, G. Spectroscopic Study of the Thermal Degradation of PVP-Capped Rh and Pt Nanoparticles in H2 and O2 Environments. J. Phys. Chem. C 2010, 114, 1117–1126. [Google Scholar] [CrossRef]
- Behera, M.; Ram, S. Inquiring the mechanism of formation, encapsulation, and stabilization of gold nanoparticles by poly(vinyl pyrrolidone) molecules in 1-butanol. Appl. Nanosci. 2014, 4, 247–254. [Google Scholar] [CrossRef]
- Mao, H.; Feng, J.; Ma, X.; Wu, C.; Zhao, X. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanoparticle Res. 2012, 14, 887. [Google Scholar] [CrossRef]
- Martín-Carrón, L.; de Andrés, A. Melting of the cooperative Jahn-Teller distortion in LaMnO3 single crystal studied by Raman spectroscopy. Eur. Phys. J. B 2001, 22, 11–16. [Google Scholar] [CrossRef]
- Sudewi, S.; Chabib, L.; Zulfajri, M.; Gedda, G.; Huang, G.G. Polyvinylpyrrolidone passivated fluorescent Iron oxide quantum dots for turn-off detection of tetracycline in biological fluids. J. Food Drug Anal. 2023, 31, 12. [Google Scholar] [CrossRef]
- Wahadoszamen, M.; Rahaman, A.; Hoque, N.M.R.; Talukder, A.I.; Abedin, K.M.; Haider, A.F.M.Y. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy. J. Spectrosc. 2015, 2015, 895317. [Google Scholar] [CrossRef]
- Tuschel, D. Selecting an Excitation Wavelength for Raman Spectroscopy. Spectroscopy 2016, 31, 14–23. [Google Scholar]
- Berthou, H.; Faure, C.; Hänni, W.; Perret, A. Morphology and Raman spectra of diamond films grown with a plasma torch. Diam. Relat. Mater. 1999, 8, 636–639. [Google Scholar] [CrossRef]
- Rahimi, M.; Aslani, M.R.; Rezai, B. Influence of surface roughness on flotation kinetics of quartz. J. Cent. South Univ. 2012, 19, 1206–1211. [Google Scholar] [CrossRef]
- Rekavandi, N.; Malekzadeh, A.; Ghiasi, E. Methyl orange degradation over nano-LaMnO3 as a green catalyst under the mild conditions. Nanochemistry Res. 2019, 4, 1–10. [Google Scholar] [CrossRef]
- Dvininov, E.; Joshi, U.A.; Darwent, J.R.; Claridge, J.B.; Xu, Z.; Rosseinsky, M.J. Room temperature oxidation of methyl orange and methanol over Pt–HCa2 Nb3 O10 and Pt–WO3 catalysts without light. Chem. Commun. 2011, 47, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, T.; Wada, T.; Fujimoto, K.; Kai, S.; Ohe, K.; Oshima, T.; Baba, Y.; Kukizaki, M. Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles. J. Hazard. Mater. 2009, 162, 1103–1110. [Google Scholar] [CrossRef]
- De Vylder, M.; De Keukeleire, D. Aggregation of Methyl Orange in Aqueous Acidic Solution. Bull. Sociétés Chim. Belg. 1978, 87, 9–13. [Google Scholar] [CrossRef]
- Zhang, R.; Dubouis, N.; Osman, M.B.; Yin, W.; Sougrati, M.T.; Corte, D.A.D.; Giaume, D.; Grimaud, A. A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. Angew. Chem. Int. Ed. 2019, 58, 4571–4575. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Wang, Y.; Peng, Y.; Li, J. Selective Dissolution of A-Site Cations in ABO3 Perovskites: A New Path to High-Performance Catalysts. Angew. Chem. Int. Ed. 2015, 54, 7954–7957. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Si, W.; Li, J.; Crittenden, J.; Hao, J. Experimental and DFT studies on Sr-doped LaMnO3 catalysts for NOx storage and reduction. Catal. Sci. Technol. 2015, 5, 2478–2485. [Google Scholar] [CrossRef]
- Peng, Y.; Si, W.; Luo, J.; Su, W.; Chang, H.; Li, J.; Hao, J.; Crittenden, J. Surface Tuning of La0.5 Sr0.5 CoO3 Perovskite Catalysts by Acetic Acid for NOx Storage and Reduction. Environ. Sci. Technol. 2016, 50, 6442–6448. [Google Scholar] [CrossRef]
- Guo, W.; Cui, L.; Xu, H.; Gong, C. Selective dissolution of A-site cations of La0.6Sr0.4Co0.8Fe0.2O3 perovskite catalysts to enhance the oxygen evolution reaction. Appl. Surf. Sci. 2020, 529, 147165. [Google Scholar] [CrossRef]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental design, bandgap study, and characterization of the catalyst. Int. J. Hydrog. Energy 2020, 45, 24636–24656. [Google Scholar] [CrossRef]
- Hasanli, H. Synthesis of Graphene-Templated Metal Oxide Catalyst Hybrid Structures for a New Generation of Cathode Material; M1 Internship report, Chimie ParisTech; Université PSL: Paris, France, 12 July 2024. [Google Scholar] [CrossRef]
- Christensen, B.H.; Deganello, F.; La Parola, V.; Jørgensen, M.K.; Boffa, V.; Østergaard, M.B. Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine B. Catalysts 2023, 13, 325. [Google Scholar] [CrossRef]
- Li, J.; Miao, J.; Duan, X.; Dai, J.; Liu, Q.; Wang, S.; Zhou, W.; Shao, Z. Fine-Tuning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. Adv. Funct. Mater. 2018, 28, 1804654. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Zhang, S.; Deng, J.; Huang, Y.; Yan, W. Flotation Behaviors of Perovskite, Titanaugite, and Magnesium Aluminate Spinel Using Octyl Hydroxamic Acid as the Collector. Minerals 2017, 7, 134. [Google Scholar] [CrossRef]
- Ghiasi, M.; Malekzadeh, A. Solar photocatalytic degradation of methyl orange over La0.7Sr0.3MnO3 nano-perovskite. Sep. Purif. Technol. 2014, 134, 12–19. [Google Scholar] [CrossRef]
- Shaterian, M.; Enhessari, M.; Rabbani, D.; Asghari, M.; Salavati-Niasari, M. Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles. Appl. Surf. Sci. 2014, 318, 213–217. [Google Scholar] [CrossRef]
- Ikram, M.; Abid, N.; Haider, A.; Ul-Hamid, A.; Haider, J.; Shahzadi, A.; Nabgan, W.; Goumri-Said, S.; Butt, A.R.; Kanoun, M.B. Toward efficient dye degradation and the bactericidal behavior of Mo-doped La2O3 nanostructures. Nanoscale Adv. 2022, 4, 926–942. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fu, B.; Huang, H.; Wu, S.; Ge, J.; Zhang, J.; Li, F.; Qu, P. Catalytic degradation of organic pollutants by manganese oxides: A comprehensive review. Environ. Pollut. Bioavailab. 2022, 34, 395–406. [Google Scholar] [CrossRef]
- Cerón-Urbano, L.; Aguilar, C.J.; Diosa, J.E.; Mosquera-Vargas, E. Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants. Nanomaterials 2023, 13, 2967. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Tang, Y.; Wang, K.; Wu, C.; Huang, X. Study on the degradation of methyl orange by UV-acetylacetone advanced oxidation system. Desalin. Water Treat. 2025, 321, 100928. [Google Scholar] [CrossRef]
- Verduzco, L.E.; Garcia-Díaz, R.; Martinez, A.I.; Almanza Salgado, R.; Méndez-Arriaga, F.; Lozano-Morales, S.A.; Avendaño-Alejo, M.; Padmasree, K.P. Degradation efficiency of methyl orange dye by La0.5Sr0.5CoO3 perovskite oxide under dark and UV irradiated conditions. Dye. Pigment. 2020, 183, 108743. [Google Scholar] [CrossRef]
- Chatt, J.; Halpern, J. Homogeneous Catalysis by Metal Ions and Complexes. In Catalysis Progress in Research; Basolo, F., Burwell, R.L., Eds.; Springer US: Boston, MA, USA, 1973; pp. 107–129. [Google Scholar] [CrossRef]
Sample Name | Ironed Area (µm2) | Sa (µm) | Sq (µm) | Sp (µm) | Sv (µm) | Sy (µm) | Sku | Ssk |
---|---|---|---|---|---|---|---|---|
S1 | 458.087 | 0.1125 | 0.1453 | 0.5827 | −0.5283 | 1.111 | 3.6416 | 0.1855 |
S2 | 439.306 | 0.0954 | 0.1233 | 0.5335 | −0.5455 | 1.079 | 3.6217 | 0.1102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Căta, A.; Ivanovici, M.-G.; Svera, P.; Ienașcu, I.M.C.; Sfirloaga, P. Research Progress on Development of PVP-Ag-Doped LaMnO3 Composites for Methyl Orange Degradation. Metals 2025, 15, 151. https://doi.org/10.3390/met15020151
Căta A, Ivanovici M-G, Svera P, Ienașcu IMC, Sfirloaga P. Research Progress on Development of PVP-Ag-Doped LaMnO3 Composites for Methyl Orange Degradation. Metals. 2025; 15(2):151. https://doi.org/10.3390/met15020151
Chicago/Turabian StyleCăta, Adina, Madalina-Gabriela Ivanovici, Paula Svera, Ioana Maria Carmen Ienașcu, and Paula Sfirloaga. 2025. "Research Progress on Development of PVP-Ag-Doped LaMnO3 Composites for Methyl Orange Degradation" Metals 15, no. 2: 151. https://doi.org/10.3390/met15020151
APA StyleCăta, A., Ivanovici, M.-G., Svera, P., Ienașcu, I. M. C., & Sfirloaga, P. (2025). Research Progress on Development of PVP-Ag-Doped LaMnO3 Composites for Methyl Orange Degradation. Metals, 15(2), 151. https://doi.org/10.3390/met15020151