Anisotropic Hardening of HC420 Steel Sheet: Experiments and Analytical Modeling
Abstract
:1. Introduction
2. Experiments
3. Anisotropic Hardening Functions
3.1. Yld2000-2d Function
3.2. Stoughton-Yoon’2009 Function
3.3. Newly Proposed Coupled Quadratic–Nonquadratic Function
4. Convexity Analysis
5. Results
6. Conclusions
- The results show anisotropic behavior in the plastic deformation of HC420 steel, such a behavior being crucial for its use in lightweight automotive applications.
- The Chen-CQN function shows high accuracy in predicting the anisotropic hardening behavior of HC420 steel under varying stress conditions, whereas the Chen-CQN function results show a prediction error of less than 2%.
- The Chen-CQN function shows superiority in yield stress prediction and clearer numerical implementation compared with Yld2000-2d and S-Y 2009 yield functions.
- The Chen-CQN function shows its ability to combine high accuracy and flexibility in determining the anisotropic behavior of HC420 steel.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galán, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbaert, Y. Advanced High Strength Steels for Automotive Industry. Rev. Metal. 2012, 48, 118–131. [Google Scholar] [CrossRef]
- Lu, C.W.; Hung, F.Y.; Chang, T.W.; Hsieh, H.Y. Study and Application on the Electromagnetic Stainless Steel: Microstructure, Tensile Mechanical Behavior, and Magnetic Properties. Materials 2024, 17, 2998. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, F.; Li, X.; Chen, J. Overview on the Prediction Models for Sheet Metal Forming Failure: Necking and Ductile Fracture. Acta Mech. Solida Sin. 2018, 31, 259–289. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.; Stoughton, T.B.; Lin, J.; Carsley, J.E.; Carlson, B.E. A Non-Quadratic Pressure-Sensitive Constitutive Model under Non-Associated Flow Rule with Anisotropic Hardening: Modeling and Validation. Int. J. Plast. 2020, 135, 102808. [Google Scholar] [CrossRef]
- You, J.; Liu, J.; Zhou, C.; Gao, W.; Yao, Y. Anisotropic Hardening and Plastic Evolution Characterization on the Pressure-Coupled Drucker Yield Function of ZK61M Magnesium Alloy. Materials 2024, 17, 1150. [Google Scholar] [CrossRef] [PubMed]
- Barlat, F.; Brem, J.C.; Yoon, J.W.; Chung, K.; Dick, R.E.; Lege, D.J.; Pourboghrat, F.; Choi, S.-H.; Chu, E. Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory. Int. J. Plast. 2003, 19, 1297–1319. [Google Scholar] [CrossRef]
- Banabic, D.; Aretz, H.; Comsa, D.S.; Paraianu, L. An Improved Analytical Description of Orthotropy in Metallic Sheets. Int. J. Plast. 2005, 21, 493–512. [Google Scholar] [CrossRef]
- Aretz, H.; Barlat, F. New Convex Yield Functions for Orthotropic Metal Plasticity. Int. J. Non. Linear Mech. 2013, 51, 97–111. [Google Scholar] [CrossRef]
- Mu, Z.; Wang, W.; Zhang, S.; Zheng, Z.; Yan, H.; Liu, S.; Ma, S.; Du, K.; Hou, Y. Towards Improved Description of Plastic Anisotropy in Sheet Metals under Biaxial Loading: A Novel Generalization of Hill48 Yield Criterion. Mater. Today Commun. 2024, 41, 110222. [Google Scholar] [CrossRef]
- Kim, J.H.; So, J.H.; Koo, H.J. Facile Formation of Metallic Surface with Microroughness via Spray-Coating of Copper Nanoparticles for Enhanced Liquid Metal Wetting. Materials 2024, 17, 5299. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, C.; Wu, P.; Whan Yoon, J. New Geometry-Inspired Numerical Convex Analysis Method for Yield Functions under Isotropic and Anisotropic Hardenings. Int. J. Solids Struct. 2024, 286, 286–287. [Google Scholar] [CrossRef]
- Barlat, F.; Aretz, H.; Yoon, J.W.; Karabin, M.E.; Brem, J.C.; Dick, R.E. Linear Transfomation-Based Anisotropic Yield Functions. Int. J. Plast. 2005, 21, 1009–1039. [Google Scholar] [CrossRef]
- Cazacu, O. New Yield Criteria for Isotropic and Textured Metallic Materials. Int. J. Solids Struct. 2018, 139–140, 200–210. [Google Scholar] [CrossRef]
- Cazacu, O. New Mathematical Results and Explicit Expressions in Terms of the Stress Components of Barlat et Al. (1991) Orthotropic Yield Criterion. Int. J. Solids Struct. 2019, 176–177, 86–95. [Google Scholar] [CrossRef]
- Park, N.; Stoughton, T.B.; Yoon, J.W. A Criterion for General Description of Anisotropic Hardening Considering Strength Differential Effect with Non-Associated Flow Rule. Int. J. Plast. 2019, 121, 76–100. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, C.; Zhang, S.; Yoon, J.W. A General Yield Function with Differential and Anisotropic Hardening for Strength Modelling under Various Stress States with Non-Associated Flow Rule. Int. J. Plast. 2022, 158, 103414. [Google Scholar] [CrossRef]
- Drucker, D.C. Relation of Experiments to Mathematical Theories of Plasticity. J. Appl. Mech. Trans. ASME 1949, 16, 349–357. [Google Scholar] [CrossRef]
- Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Brem, J.C.; Hayashida, Y.; Lege, D.J.; Matsui, K.; Murtha, S.J.; Hattori, S.; et al. Yield Function Development for Aluminum Alloy Sheets. J. Mech. Phys. Solids 1997, 45, 1727–1763. [Google Scholar] [CrossRef]
- Hu, Q.; Yoon, J.W. Anisotropic Distortional Hardening Based on Deviatoric Stress Invariants under Non-Associated Flow Rule. Int. J. Plast. 2022, 151, 103214. [Google Scholar] [CrossRef]
- Lee, E.H.; Mallett, R.L.; Wertheimer, T.B. Stress Analysis for Anisotropic Hardening in Finite-Deformation Plasticity. Am. Soc. Mech. Eng. 1983, 50, 554–560. [Google Scholar] [CrossRef]
- Hu, Q.; Yoon, J.W.; Manopulo, N.; Hora, P. A Coupled Yield Criterion for Anisotropic Hardening with Analytical Description under Associated Flow Rule: Modeling and Validation. Int. J. Plast. 2021, 136, 102882. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.; Lin, J.; Lee, M.G. Modeling Stress Anisotropy, Strength Differential, and Anisotropic Hardening by Coupling Quadratic and Stress-Invariant-Based Yield Functions under Non-Associated Flow Rule. Mech. Mater. 2022, 174, 104458. [Google Scholar] [CrossRef]
- Lou, Y.; Yoon, J.W. Lode-Dependent Anisotropic-Asymmetric Yield Function for Isotropic and Anisotropic Hardening of Pressure-Insensitive Materials. Part I: Quadratic Function under Non-Associated Flow Rule. Int. J. Plast. 2023, 166, 103647. [Google Scholar] [CrossRef]
- Stoughton, T.B.; Yoon, J.W. Anisotropic Hardening and Non-Associated Flow in Proportional Loading of Sheet Metals. Int. J. Plast. 2009, 25, 1777–1817. [Google Scholar] [CrossRef]
- Du, K.; Huang, S.; Li, X.; Wang, H.; Zheng, W.; Yuan, X. Evolution of Yield Behavior for AA6016-T4 and DP490—Towards a Systematic Evaluation Strategy for Material Models. Int. J. Plast. 2022, 154, 103302. [Google Scholar] [CrossRef]
- Hou, Y.; Du, K.; El-Aty, A.A.; Lee, M.G.; Min, J. Plastic Anisotropy of Sheet Metals under Plane Strain Loading: A Novel Non-Associated Constitutive Model Based on Fourth-Order Polynomial Functions. Mater. Des. 2022, 223, 111187. [Google Scholar] [CrossRef]
- Lee, E.H.; Choi, H.; Stoughton, T.B.; Yoon, J.W. Combined Anisotropic and Distortion Hardening to Describe Directional Response with Bauschinger Effect. Int. J. Plast. 2019, 122, 73–88. [Google Scholar] [CrossRef]
- Barlat, F.; Yoon, J.W.; Cazacu, O. On Linear Transformations of Stress Tensors for the Description of Plastic Anisotropy. Int. J. Plast. 2007, 23, 876–896. [Google Scholar] [CrossRef]
- Barlat, F.; Lian, J. Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets under Plane Stress Conditions. Int. J. Plast. 1989, 5, 51–66. [Google Scholar] [CrossRef]
- Hou, Y.; Lee, M.G.; Lin, J.; Min, J. Experimental Characterization and Modeling of Complex Anisotropic Hardening in Quenching and Partitioning (Q&P) Steel Subject to Biaxial Non-Proportional Loadings. Int. J. Plast. 2022, 156, 103347. [Google Scholar] [CrossRef]
- Du, K.; Huang, S.; Wang, H.; Yu, F.; Pan, L.; Huang, H.; Zheng, W.; Yuan, X. Effect of Different Yield Criteria and Material Parameter Identification Methods on the Description Accuracy of the Anisotropic Behavior of 5182-O Aluminum Alloy. J. Mater. Eng. Perform. 2022, 31, 1077–1095. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.; Guo, N.; Shen, Y.; Lin, J. Evolving Asymmetric Yield Surfaces of Quenching and Partitioning Steels: Characterization and Modeling. J. Mater. Process. Technol. 2021, 290, 116979. [Google Scholar] [CrossRef]
- Hou, Y.; Myung, D.; Park, J.K.; Min, J.; Lee, H.R.; El-Aty, A.A.; Lee, M.G. A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials. Materials 2023, 16, 836. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Zhang, S.; Yoon, J.W. Strength Modeling of Sheet Metals from Shear to Plane Strain Tension. Int. J. Plast. 2020, 134, 102813. [Google Scholar] [CrossRef]
- Park, N.; Stoughton, T.B.; Yoon, J.W. A New Approach for Fracture Prediction Considering General Anisotropy of Metal Sheets. Int. J. Plast. 2020, 124, 199–225. [Google Scholar] [CrossRef]
- Kuwabara, T.; Mori, T.; Asano, M.; Hakoyama, T.; Barlat, F. Material Modeling of 6016-O and 6016-T4 Aluminum Alloy Sheets and Application to Hole Expansion Forming Simulation. Int. J. Plast. 2017, 93, 164–186. [Google Scholar] [CrossRef]
- Du, K.; Cui, J.; Hou, Y.; Ren, Y.; You, J.; Ying, L.; Li, X.; Zuo, X.; Huang, H.; Yuan, X. Breaking through the Plasticity Modeling Limit in Plane Strain and Shear Loadings of Sheet Metals by a Novel Additive-Coupled Analytical Yield Criterion. J. Mater. Sci. Technol. 2024, 225, 261–276. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Lou, Y. User-Friendly Anisotropic Hardening Function with Non-Associated Flow Rule under the Proportional Loadings for BCC and FCC Metals. Mech. Mater. 2022, 165, 104190. [Google Scholar] [CrossRef]
- Wang, J.; Pi, A.; Zhang, Z.; Wu, M.; Huang, F.; Wang, Z.; Hao, F. A Symmetric and Asymmetric Yield Function Based on Normalized Stress Invariant Suitable for Sheet and Bulk Metals under Various Stress States. J. Mater. Process. Technol. 2025, 337, 118728. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Al | Nb | Ti |
---|---|---|---|---|---|---|---|
0.10 | 0.50 | 1.60 | 0.025 | 0.024 | 0.015 | ≤0.09 | 0.15 |
Stress State | r-Value | K [MPa] | e0 | n | A [MPa] | B [MPa] | C | α |
---|---|---|---|---|---|---|---|---|
RD #2 | 0.8012 | 1256.24 | 0.0020 | 0.1671 | 897.55 | 495.35 | 24.03 | 0.7403 |
DD #2 | 0.8437 | 1310.93 | 0.0022 | 0.1595 | 943.96 | 536.38 | 25.40 | 0.8217 |
TD #2 | 0.9316 | 1326.76 | 0.0019 | 0.1565 | 951.06 | 542.42 | 27.55 | 0.8046 |
EBT | 1.00 | 1231.30 | 0.0020 | 0.1323 | 1096.30 | 572.59 | 11.51 | 0.7665 |
λ | m | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.002 | 0.9988 | 0.8812 | 0.9780 | 0.9470 | 0.9739 | 0.7950 | 0.9235 | 0.9800 | 6 |
0.10 | 1.0034 | 0.8752 | 0.9852 | 0.9464 | 0.9739 | 0.7968 | 0.9243 | 0.9798 | 6 |
0.20 | 0.9988 | 0.8812 | 0.9780 | 0.9470 | 0.9739 | 0.7950 | 0.9235 | 0.9800 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhalaybeh, T.S.; Akhtar, H.; Chowdhury, A.I.; Lou, Y. Anisotropic Hardening of HC420 Steel Sheet: Experiments and Analytical Modeling. Metals 2025, 15, 149. https://doi.org/10.3390/met15020149
Alhalaybeh TS, Akhtar H, Chowdhury AI, Lou Y. Anisotropic Hardening of HC420 Steel Sheet: Experiments and Analytical Modeling. Metals. 2025; 15(2):149. https://doi.org/10.3390/met15020149
Chicago/Turabian StyleAlhalaybeh, Thamer Sami, Hammad Akhtar, Ashiq Iqbal Chowdhury, and Yanshan Lou. 2025. "Anisotropic Hardening of HC420 Steel Sheet: Experiments and Analytical Modeling" Metals 15, no. 2: 149. https://doi.org/10.3390/met15020149
APA StyleAlhalaybeh, T. S., Akhtar, H., Chowdhury, A. I., & Lou, Y. (2025). Anisotropic Hardening of HC420 Steel Sheet: Experiments and Analytical Modeling. Metals, 15(2), 149. https://doi.org/10.3390/met15020149