Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels
Abstract
:1. Introduction
2. IG Fracture Occurrence in Relation to Irradiation Temperature
2.1. Low Temperature Irradiation
2.2. Intermediate Temperature of Irradiation
2.3. High Irradiation Temperature
3. Key Points of Discussion
3.1. Plastic Deformation
3.2. Mechanism of IG Fracture
- The atomically brittle intergranular fracture (Figure 1a) arising from (a) decohesion triggered by the segregation on grain boundary; or (b) austenite to ferrite transformation, e.g., strain martensite formation, due to chemical changes in composition in grain boundary region and its failure, or (c) nano-scale H/He filled cavities at grain boundary link up and brittle failure of bridges in between.
- The nano-scale dimpled intergranular fracture (Figure 1b) resulting from (a) twinning limited to grain boundary region because the temperature is not high enough to activate twinning deformation in grains; or (b) nano-scale H/He filled cavities at grain boundary link up and shear of bridges in between.
3.2.1. Type 1—Brittle Intergranular Fracture
3.2.2. Type 2—Ductile Intergranular Fracture
3.2.3. Irradiation Assisted SCC Fracture
3.3. Ductile-To-Brittle Transition
4. Conclusions
Acknowledgments
Conflicts of Interest
List of Abbreviations
Abbreviation | Name | Abbreviation | Name |
ASS | Austenitic Stainless Steel | MHV | Micro Hardness |
BOR | Russian fast reactor | MVC | Micro-Void Coalescence |
BWR | Boiling Water Reactor | PFZ | Precipitate Free Zone |
CSL | Coincidence-Site Lattice | PWR | Pressurized Water Reactor |
CT | Compact Tension specimen | RCI | Reactor Core Internals |
CW | Cold Work | RD | Radiation Damage |
DBT | Ductile-to-Brittle Transition | RIS | Radiation Induced Segregation |
dpa | Displacement per atom | RT | Room Temperature |
EBR | Experimental Breeder Reactor | SCC | Stress Corrosion Cracking |
EDS | Energy-dispersive X-ray spectroscopy | ||
FTT | Flux thimble tubes | SEM | Scanning Electron Microscopy |
HTLR | High T Low-strain Rate | SFE | Stacking Fault Energy |
GB | Grain Boundary | TEM | Transmission Electron Microscopy |
GBP | Grain Boundary Precipitate | TG | Transgranular |
GHAB | General high angle GB | Tir | Irradiation Temperature |
IASCC | Irradiation Assisted SCC | Tt | Test Temperature |
IG | Intergranular | WWER | Russian PWR |
IGSCC | Intergranular SCC | ΔESE,I | Strengthening/embrittling energy |
JIC | Critical Fracture Resistance | Σ | GB crystallography characteristics |
JMTR | Japan Material Test Reactor | α | Ferrite phase |
KIC | Fracture Toughness | α′, ε | Martensite phase |
LTHR | Low T high strain rate | γ | Austenite phase |
LWR | Light Water Reactor |
References
- Bruemmer, S.M.; Charlot, L.A.; Atteridge, D.G. Sensitization development in austenite stainless steel—measurement and prediction of thermo-mechanical history effects. Corrosion 1988, 44, 427–434. [Google Scholar] [CrossRef]
- Lynch, S.P. Mechanisms of intergranular fracture. Mater. Sci. Forum 1989, 46, 1–24. [Google Scholar] [CrossRef]
- Hojna, A. Intergranular Fracture and Fracture Toughness of Irradiated Austenitic Stainless Steels of Reactor Core Internals. In Proceedings of the 16th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ashville, NC, USA, 11–15 August 2013; NACE: Houston, TX, USA, 2014. ISBN 978-1-5108-1923-8. [Google Scholar]
- Nastasi, M.; Mayer, J.W.; Hirvonen, J.K. Ion-Solid Interactions. In Ion-Solid Interactions: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 1996; ISBN 052137376X. [Google Scholar]
- Bruemmer, S.M.; Simonen, E.P.; Scott, P.M.; Andresen, P.L.; Was, G.S.; Nelson, J.L. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 1999, 274, 299–314. [Google Scholar] [CrossRef]
- Hojna, A.; Duchon, J.; Halodova, P.; Namburi, H.K. Effect of Strain Rate and High Temperature Water on Deformation Structure of Vver Neutron Irradiated Core Internals Steel. In Proceedings of the 18th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Portland, OR, USA, 13–17 August 2017; The Minerals, Metals & Materials Society: Warrendale, PA, USA, 2018. [Google Scholar]
- Kim, J.W.; Byun, T.S. Analysis of tensile deformation and failure in austenitic stainless steels: Part I—Temperature dependence. J. Nucl. Mater. 2010, 396, 1–9. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, T.S. Analysis of tensile deformation and failure in austenitic stainless steels: Part II—Irradiation dose dependence. J. Nucl. Mater. 2010, 396, 10–19. [Google Scholar] [CrossRef]
- Bloom, E.E.; Weir, J.R., Jr. Effect of neutron irradiation on the ductility of austenitic stainless steel. Nucl. Technol. 1972, 16, 45–54. [Google Scholar] [CrossRef]
- Nelson, J.L.; Gorman, J.A.; Pathania, R.; Busby, J. Development of Potential Radiation Resistant Alloys for Use in LWRs. In Proceedings of the 16th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ashville, NC, USA, 11–15 August 2013; NACE: Houston, TX, USA, 2014. ISBN 978-1-5108-1923-8. [Google Scholar]
- Chopra, O.K.; Rao, A.S. A review of irradiation effects on LWR core internal materials—Neutron embrittlement. J. Nucl. Mater. 2011, 412, 195–208. [Google Scholar] [CrossRef]
- Fyfitch, S.; Xu, H.; Demma, A.; Carter, R.; Gamble, R.; Scott, P. Fracture Toughness of Irradiated Stainless Steel in Nuclear Power Systems. In Proceedings of the 14th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Virginia Beach, VA, USA, 23–27 August 2009; American Nuclear Society (ANS): Cook County, IL, USA, 2010; pp. 1307–1313, ISBN 9781617388538. [Google Scholar]
- Hojna, A.; Ernestova, M.; Hietanen, O.; Korhonen, R.; Hulinova, L.; Oszvald, F. Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steel WWER Reactor Core Internals. In Proceedings of the 15th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Colorado Springs, CO, USA, 7–11 August 2011; The Minerals, Metals & Materials Society: Warrendale, PA, USA, 2011. ISBN 978-1-118-1341-8. [Google Scholar]
- Lucas, G.E.; Billone, M.; Pawel, J.E.; Hamilton, M.L. Implications of radiation-induced reductions in ductility of austenitic stainless steel structures. J. Nucl. Mater. 1996, 233–237, 207–212. [Google Scholar] [CrossRef]
- Manahan, M.P.; Kohli, R.; Santucci, J.; Sipush, P. A Phenomenological investigation of in-reactor cracking of type 304 stainless steel control rod cladding. Nucl. Eng. Des. 1989, 113, 297–321. [Google Scholar] [CrossRef]
- Fukuya, K.; Nishioka, H.; Fujii, K.; Kamaya, M.; Miura, T.; Torimaru, T. Material Property Changes of Stainless Steels under PWR Irradiation. In Proceedings of the International Congress on Advances in Nuclear Power Plants 2009 (ICAPP 2009), Tokyo, Japan, 10–14 May 2009. [Google Scholar]
- Fukuya, K.; Nishioka, H.; Fujii, K.; Kamaya, M.; Miura, T.; Torimaru, T. Fracture behavior of austenitic stainless steels irradiated in PWR. J. Nucl. Mater. 2008, 378, 211–219. [Google Scholar] [CrossRef]
- Miura, T.; Fujii, K.; Fukuya, K. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel. J. Nucl. Mater. 2015, 457, 279–290. [Google Scholar] [CrossRef]
- Jenssen, A.; Efsing, P.; Forssgren, B.; Bengtsson, B.; Molin, M. Examination of Highly Irradiated Stainless Steels from BWR and PWR Reactor Pressure Vessel Internals. In Proceedings of the 7th International Symposium on Contributions of Materials Investigation to Improve the Safety and Performance of PWRs (Fontevraud 7), Avignon, France, 26–30 September 2010; Société Française d'Énergie Nucléaire (SFEN): Paris, France, 2010. [Google Scholar]
- Jenssen, A.; Grigoriev, V.; Jakobsson, R.; Efsing, P. Fracture Resistance Evaluation of a Flux Thimble Irradiated to 65 Dpa in a PWR. In Proceedings of the 6th International Symposium on Contributions of Materials Investigation to Improve the Safety and Performance of PWRs (Fontevraud 6), Fontevraud, France, 18–22 September 2006; Société Française d’Énergie Nucléaire (SFEN): Paris, France, 2006. [Google Scholar]
- Matsuoka, T.; Yamaguchi, Y.; Yonezawa, T.; Nakamura, K.; Fukuda, R.; Shiraishi, S. Irradiation assisted mechanical cracking on cladding tubes of control rods in nuclear reactors. JSME Int. J. A 1999, 42, 438–446. [Google Scholar] [CrossRef]
- Fukuya, K.; Nakano, M.; Fujii, K.; Torimaru, T. IASCC susceptibility and slow tensile properties of highly-irradiated 316 stainless steels. J. Nucl. Sci. Technol. 2004, 41, 673–681. [Google Scholar] [CrossRef]
- Connerman, J.; Shogan, R.; Fujimoto, K.; Yonezawa, T.; Yamaguchi, Y. Irradiation Effects in a Highly Irradiated Cold Worked Stainless Steel Removed From A Commercial PWR. In Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Salt Lake City, UT, USA, 14–18 August 2005; Allen, T.R., King, P.J., Nelson, L., Eds.; TMS (The Minerals, Metals & Materials Society): Warrendale, PA, USA, 2005; pp. 277–284. [Google Scholar]
- Nishioka, H.; Fukuya, K.; Fujii, K.; Torimaru, T. IASCC Properties And Mechanical Behavior of Stainless Steels Irradiated up to 73 dpa. In Proceedings of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Whistler, BC, Canada, 19–23 August 2007. [Google Scholar]
- Fukuya, K. Current understanding of radiation-induced degradation in light water reactor structural materials. J. Nucl. Sci. Technol. 2013, 50, 213–254. [Google Scholar] [CrossRef]
- Toivonen, A.; Aaltonen, P.; Karlsen, W.; Ehensten, U.; Massoud, J.-P.; Bouesier, J.-M. Post-Irradiation SCC Investigations on Highly-Irradiated Core Internals Component Materials. In Proceedings of the 6th International Symposium on Contributions of Materials Investigation to Improve the Safety and Performance of PWRs (Fontevraud 6), Fontevraud, France, 18–22 September 2006; Société Française d’Énergie Nucléaire (SFEN): Paris, France, 2006. [Google Scholar]
- Was, G.S. Recent Developments in Understanding Irradiation Assisted Stress Corrosion Cracking. In Proceedings of the 11th International Conference Environmental Degradation of Materials in Nuclear Systems, Skamania Lodge, WA, USA, 10–14 August 2003; pp. 965–984. [Google Scholar]
- Jiao, Z.; Was, G.S. Impact of localized deformation on IASCC in austenitic stainless steels. J. Nucl. Mater. 2011, 408, 246–256. [Google Scholar] [CrossRef]
- Lucas, G.E. The evolution of mechanical property change in irradiated austenitic stainless steels. J. Nucl. Mater. 1993, 206, 287–305. [Google Scholar] [CrossRef]
- Fish, R.L.; Straalsund, J.L.; Hunter, C.W.; Holmes, J.J. Swelling and Tensile Property Evaluations of High-fluence EBR-II Thimbles. In Effects of Radiation on Substructure and Mechanical Properties of Metals and Alloys; STP529; ASTM: Philadelphia, PA, USA, 1973; pp. 149–164. [Google Scholar]
- Garner, F.A. Radiation Damage in Austenitic Steels. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 33–95. [Google Scholar]
- Huang, F.H. The fracture characterization of highly irradiated Type 316 stainless steel. Int. J. Fract. 1984, 25, 181–193. [Google Scholar] [CrossRef]
- Hamilton, M.L.; Huang, F.H.; Yang, W.J.S.; Garner, F.A. Mechanical Properties and Fracture Behavior of 20% Cold-Worked 316 Stainless Steel Irradiated to Very High Neutron Exposures. In Influence of Radiation in Material Properties: 13th International Symposium (Part II); Garner, F.A., Henager, C.H., Jr., Igata, N., Eds.; ASTM STP 956; ASTM: Philadelphia, PA, USA, 1987; pp. 245–270. [Google Scholar]
- Margolin, B.Z.; Kursevich, I.P.; Sorokin, A.A.; Neustroev, V.S. The Relationship of Radiation Embrittlement and Swelling for Austenitic Steel for WWER Internals. In Proceedings of the ASME 2009 Pressure Vessels and Piping Conference, Prague, Czech Republic, 26–30 July 2009; ASME: Philadelphia, PA, USA, 2009. [Google Scholar]
- Neustroev, V.S.; Garner, F.A. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling. J. Nucl. Mater. 2009, 386–388, 157–160. [Google Scholar] [CrossRef]
- Zinkle, S.J. Fusion materials science: Overview of challenges and recent progress. Phys. Plasmas 2005, 2, 058101. [Google Scholar] [CrossRef]
- Bruemmer, S.M.; Cole, J.I.; Brimhall, J.L.; Carter, R.D.; Was, G.S. Radiation Hardening Effects on Localized Deformation and Stress Corrosion Cracking of Stainless Steels. In Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, San Diego, CA, USA, 3–5 August 1993; pp. 537–546. [Google Scholar]
- Hashimoto, N.; Zinkle, S.J.; Rowclife, A.F.; Robertson, J.P.; Jitsukawa, S. Deformation mechanisms in 316 stainless steel irradiated at 60 °C and 330 °C. J. Nucl. Mater. 2000, 283–287, 528–534. [Google Scholar] [CrossRef]
- Talonen, J. Effect of Strain-induced α′-martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 2007. [Google Scholar]
- Gusev, M.N.; Maksimkin, O.P.; Garner, F.A. Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels. J. Nucl. Mater. 2010, 403, 121–125. [Google Scholar] [CrossRef]
- Gusev, M.N.; Maksimkin, O.P.; Osipov, I.S.; Garner, F.A. Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 °C in the BN-350 reactor. J. Nucl. Mater. 2009, 386–388, 273–276. [Google Scholar] [CrossRef]
- Karlsen, W.; Pakarinen, J.; Toivonen, A.; Ehrnstén, U. Deformation microstructures of 30 dpa AISI 304 stainless steel after monotonic tensile and constant load autoclave testing. In Proceedings of the 15th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Colorado Springs, CO, USA, 7–11 August 2011; TMS: Warrendale, PA, USA, 2011. ISBN 978-1-118-1341-8. [Google Scholar]
- Lejček, P. Grain Boundary Segregation in Metals, 1st ed.; Springer Series in Material Science 136; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-12504-1. [Google Scholar]
- West, E.A.; Was, G.S. IGSCC of grain boundary engineered 316L and 690 in supercritical water. J. Nucl. Mater. 2009, 392, 264–271. [Google Scholar] [CrossRef]
- Lehockey, E.M.; Brennenstuhl, A.M.; Thompson, I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking. Corros. Sci. 2004, 46, 2383–2404. [Google Scholar] [CrossRef]
- Lejček, P.; Šob, M.; Paidar, V. Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 2017, 87, 83–139. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, D.L.; Wang, Y.M.; Wang, S.Q.; Ye, H.Q.; Wang, C.Y. Effects of Cr, Mn on the cohesion of the γ-iron grain boundary. Acta Mater. 2001, 49, 1079–1085. [Google Scholar] [CrossRef]
- Bruemmer, S.M. Grain boundary chemistry and intergranular failure of austenitic stainless steels. Mater. Sci. Forum 1989, 46, 309–334. [Google Scholar] [CrossRef]
- Simmons, J.W.; Atteridge, D.G.; Bruemmer, S.M. Continuous cooling sensitization of type 316 austenitic stainless steel. Corrosion 1992, 48, 976–982. [Google Scholar] [CrossRef]
- Kilian, R.; Brümmer, G.; Ilg, U.; Meier, V.; Teichmann, H.; Wachter, O. Characterization of Sensitization and Stress Corrosion Cracking Behavior of Stabilized Stainless Steels under BWR-Conditions. In Proceedings of the 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Breckenridge, CO, USA, 6–10 August 1995; Airey, G., Andresen, P., Brown, J., Eds.; NACE: Houston, TX, USA, 1995; Volume 2, pp. 529–538, ISBN 1877914959. [Google Scholar]
- Stratulat, A.; Duff, J.; Marrow, T.J. Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel observed in situ. Corros. Sci. 2014, 85, 428–435. [Google Scholar] [CrossRef]
- Hure, J.; El Shawish, S.; Cizelj, L.; Tanguy, B. Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel. J. Nucl. Mater. 2016, 476, 231–242. [Google Scholar] [CrossRef]
- Gussev, M.N.; Busby, J.T.; Byun, T.S.; Tan, L. Phase stability of highly irradiated austenitic alloys during deformation. In Proceedings of the 16th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ashville, NC, USA, 11–15 August 2013; NACE: Houston, TX, USA, 2013. [Google Scholar]
- Bennetch, J.I.; Jesser, W.A. Microstructural aspects of He embrittlement in type 316 stainless steel. J. Nucl. Mater. 1981, 104, 809–813. [Google Scholar] [CrossRef]
- Nogami, S.; Hasegawa, A.; Tanno, T.; Imasaki, K.; Abe, K. High-temperature helium embrittlement of 316FR steel. J. Nucl. Sci. Technol. 2011, 48, 130–134. [Google Scholar] [CrossRef]
- Byun, T.S.; Hashimoto, N.; Farrell, K. Deformation mode map of irradiated 316 stainless steel in true stress–dose space. J. Nucl. Mater. 2006, 351, 303–315. [Google Scholar] [CrossRef]
- West, E.A.; Was, G.S. Strain incompatibilities and their role in intergranular cracking of irradiated 316L stainless steel. J. Nucl. Mater. 2013, 441, 623–632. [Google Scholar] [CrossRef]
- Stephenson, K.J.; Was, G.S. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water. J. Nucl. Mater. 2014, 444, 331–341. [Google Scholar] [CrossRef]
- Stephenson, K.J.; Was, G.S. The role of dislocation channeling in IASCC initiation of neutron irradiated stainless steel. J. Nucl. Mater. 2014, 481, 214–225. [Google Scholar] [CrossRef]
- Kaji, Y.; Kondo, K.; Aoyagi, Y.; Kato, Y.; Taguchi, T.; Takada, F.; Nakano, J.; Ugachi, H.; Tsukada, T.; Takakura, K.; et al. Stress Corrosion Cracking Behavior of Type 304 Stainless Steel Irradiated under Different Neutron Dose Rates at JMTR. In Proceedings of the 15th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Colorado Springs, CO, USA, 7–11 August 2011; TMS: Warrendale, PA, USA, 2011. ISBN 978-1-118-1341-8. [Google Scholar]
Steel | C | Mn | Si | S | P | Ni | Cr | Mo | Nb | Ti | Co | Cu | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A304L | Max. 0.035 | Max. 2.0 | Max. 1.0 | Max. 0.03 | Max. 0.04 | 9.0–11.0 | 18.5–20.0 | - | - | - | Max. 0.10 | Max. 0.10 | Max. 0.08 |
A316 | Max. 0.80 | Max. 2.0 | Max. 1.0 | Max. 0.03 | Max. 0.04 | 10.0–14.0 | 16.0–18.0 | 2.25–3.00 | - | - | Max. 0.10 | Max. 0.10 | Max. 0.08 |
A316L | Max. 0.030 | Max. 2.0 | Max. 1.0 | Max. 0.03 | Max. 0.045 | 10.0–14.0 | 16.0–18.5 | 2.00–3.00 | - | - | Max. 0.10 | Max. 0.10 | Max. 0.08 |
A321 | Max. 0.80 | Max. 2.0 | Max. 1.0 | Max. 0.03 | Max. 0.045 | 9.0–12.0 | 17.0–19.0 | - | - | Min 0.30 Max 0.70 | Max. 0.05 | Max. 0.30 | Max. 0.05 |
A347 | Max. 0.40 | Max. 2.0 | Max. 1.0 | Max. 0.02 | Max. 0.035 | 9.0–12.0 | 17.0–19.0 | - | Max. 0.065 | - | Max. 0.20 | - | Max. 0.08 |
18Cr-10Ni-Ti | Max. 0.08 | Max. 2.0 | Max. 0.8 | Max. 0.02 | Max. 0.035 | 9.0–11.0 | 17.0–19.0 | - | - | Min. 5xC Max. 0.70 | Max. 0.05 | Max. 0.30 | Max. 0.05 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojná, A. Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels. Metals 2017, 7, 392. https://doi.org/10.3390/met7100392
Hojná A. Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels. Metals. 2017; 7(10):392. https://doi.org/10.3390/met7100392
Chicago/Turabian StyleHojná, Anna. 2017. "Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels" Metals 7, no. 10: 392. https://doi.org/10.3390/met7100392
APA StyleHojná, A. (2017). Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels. Metals, 7(10), 392. https://doi.org/10.3390/met7100392