Fatigue Damage
1. Introduction and Scope
2. Contributions
2.1. High-Cycle Fatigue
2.2. Fatigue and Creep Interaction
2.3. Fatigue in Corrosive Media
3. Conclusions and Outlook
Conflicts of Interest
References
- Benedetti, M.; Torresani, E.; Fontanari, V.; Lusuardi, D. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron. Metals 2017, 7, 88. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Ma, L.; Yi, J. Effects of Solution Treatment on Microstructure and High-Cycle Fatigue Properties of 7075 Aluminum Alloy. Metals 2017, 7, 193. [Google Scholar] [CrossRef]
- Liu, D.; Pons, D.J. Physical-Mechanism Exploration of the Low-Cycle Unified Creep-Fatigue Formulation. Metals 2017, 7, 379. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Wang, X.; Pan, P.; Jia, D. The Effects of Corrosive Media on Fatigue Performance of Structural Aluminum Alloys. Metals 2016, 6, 160. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berto, F. Fatigue Damage. Metals 2017, 7, 394. https://doi.org/10.3390/met7100394
Berto F. Fatigue Damage. Metals. 2017; 7(10):394. https://doi.org/10.3390/met7100394
Chicago/Turabian StyleBerto, Filippo. 2017. "Fatigue Damage" Metals 7, no. 10: 394. https://doi.org/10.3390/met7100394
APA StyleBerto, F. (2017). Fatigue Damage. Metals, 7(10), 394. https://doi.org/10.3390/met7100394