Free Volume Contributing to the Different Yield Behaviors between Tension and Compression Deformations in Metallic Glasses
Abstract
:1. Introduction
2. Experimental and Simulation Section
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnson, W.L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 1999, 24, 42–56. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Sergueeva, A.V.; Mara, N.A.; Branagan, D.J.; Mukherjee, A.K. Strain rate effect on metallic glass ductility. Scr. Mater. 2004, 50, 1303–1307. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Eckert, J.; Schultz, L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003, 51, 1167–1179. [Google Scholar] [CrossRef]
- Qiu, K.Q.; Wang, A.M.; Zhang, H.F.; Ding, B.Z.; Hu, Z.Q. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 2002, 10, 1283–1288. [Google Scholar] [CrossRef]
- Park, K.W.; Fleury, E.; Seok, H.K.; Kim, Y.C. Deformation behaviors under tension and compression: Atomic simulation of Cu65Zr35 metallic glass. Intermetallics 2011, 19, 1168–1173. [Google Scholar] [CrossRef]
- Ogata, S.; Shimizu, F.; Li, J.; Wakeda, M.; Shibutani, Y. Atomistic simulation of shear localization in Cu-Zr bulk metallic glass. Intermetallics 2006, 14, 1033–1037. [Google Scholar] [CrossRef]
- Feng, S.D.; Chan, K.C.; Chen, S.H.; Zhao, L.; Liu, R.P. The role of configurational disorder on plastic and dynamic deformation in Cu64Zr36 metallic glasses: A molecular dynamics analysis. Sci. Rep. 2017, 7, 40969. [Google Scholar] [CrossRef] [PubMed]
- Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407–415. [Google Scholar] [CrossRef]
- Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47–58. [Google Scholar] [CrossRef]
- Jiao, W.; Sun, B.A.; Wen, P.; Bai, H.Y.; Kong, Q.P. Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Appl. Phys. Lett. 2013, 103, 081904. [Google Scholar] [CrossRef]
- Wang, W.H. Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 2006, 99, 93506. [Google Scholar] [CrossRef]
- Huang, B.; Bai, H.Y.; Wang, W.H. Unique properties of CuZrAl bulk metallic glasses induced by microalloying. J. Appl. Phys. 2011, 110, 123522. [Google Scholar] [CrossRef]
- Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater. 2009, 57, 5146–5155. [Google Scholar] [CrossRef]
- Schuh, C.A.; Lund, A.C. Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2003, 2, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, E.V.; Evteev, A.V.; Kozubski, R.; Belova, I.V.; Murch, G.E. Molecular dynamics simulation of surface segregation in a (110) B2-NiAl thin film. Phys. Chem. Chem. Phys. 2011, 13, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Sastry, S.; Corti, D.S.; Debenedeti, P.G.; Stillinger, F.H. Statistical geometry of particle packings. Phys. Rev. E 1997, 56, 5524–5532. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.J.; Hou, H.Y.; Chen, G.; Chen, G.L.; Li, M. Atomic scale calculation of the free volume in Zr2Ni metallic glass. Intermetallics 2009, 17, 98–103. [Google Scholar] [CrossRef]
- Yang, L.; Guo, G.Q.; Chen, L.Y.; Huang, C.L.; Ge, T.; Chen, D.; Liaw, P.K.; Saksl, K.; Ren, Y.; Zeng, Q.S.; et al. Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Phys. Rev. Lett. 2012, 109, 105502. [Google Scholar] [CrossRef] [PubMed]
- Park, K.W.; Jang, J.; Wakeda, M.; Shibutani, Y.; Lee, J.C. Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys. Scr. Mater. 2007, 57, 805–808. [Google Scholar] [CrossRef]
- Wakeda, M.; Shibutani, Y.; Ogata, S. Relationship between local geometrical factors and mechanical properties for Cu-Zr amorphous alloys. Intermetallics 2007, 15, 139–144. [Google Scholar] [CrossRef]
- Sun, Y.L.; Shen, J.; Valladares, A.A. Atomic structure and diffusion in Cu60Zr40 metallic liquid and glass: Molecular dynamics simulations. J. Appl. Phys. 2009, 106, 73520. [Google Scholar] [CrossRef]
- Wu, S.Q.; Wang, C.Z.; Hao, S.G.; Zhu, Z.Z.; Ho, K.M. Energetics of local clusters in Cu64.5Zr35.5 metallic liquid and glass. Appl. Phys. Lett. 2010, 97, 21901. [Google Scholar] [CrossRef]
- Bharathula, A.; Luo, W.; Windl, W.; Flores, K.M. Characterization of open volume regions in a simulated Cu-Zr metallic glass. Metall. Mater. Trans. A 2008, 39, 1779–1785. [Google Scholar] [CrossRef]
- Duan, G.; Xu, D.H.; Zhang, Q.; Zhang, G.Y.; Cagin, T.; Johnson, W.L.; Goddard, W.A. Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure. Phys. Rev. B 2005, 72, 224208. [Google Scholar] [CrossRef]
- Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Mendelev, M.I.; Sordelet, D.J.; Kramer, M.J. Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J. Appl. Phys. 2007, 102, 43501. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Wang, X.D.; Ruta, B.; Xiong, L.H.; Zhang, D.W.; Chushkin, Y.; Sheng, H.W.; Lou, H.B.; Cao, Q.P.; Jiang, J.Z. Free-volume dependent atomic dynamics in beta relaxation pronounced La-based metallic glasses. Acta Mater. 2015, 99, 290–296. [Google Scholar] [CrossRef]
- Park, K.W.; Shibutani, Y.; Falk, M.L.; Lee, B.J.; Lee, J.C. Shear localization and the plasticity of bulk amorphous alloys. Scr. Mater. 2010, 63, 231–234. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Cao, A.J.; Sheng, H.W.; Ma, E. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 2008, 56, 5263–5275. [Google Scholar] [CrossRef]
- Park, K.W.; Lee, C.M.; Wakeda, M.; Shibutani, Y.; Falk, M.L.; Lee, J.C. Elastostatically induced structural disordering in amorphous alloys. Acta Mater. 2008, 56, 5440–5450. [Google Scholar] [CrossRef]
- Brostow, W.; Chybicki, M.; Laskowski, R. Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Phys. Rev. B 1998, 57, 13448–13458. [Google Scholar] [CrossRef]
- Tsai, A.P. Icosahedral clusters, icosaheral order and stability of quasicrystals—A view of metallurgy. Sci. Technol. Adv. Mater. 2008, 9. [Google Scholar] [CrossRef] [PubMed]
- Sietsma, J.; Thijsse, B.J. Characterization of free volume in atomic models of metallic glasses. Phys. Rev. B 1995, 52, 3248–3255. [Google Scholar] [CrossRef]
- Cui, X.; Zu, F.Q.; Zhang, W.J. Phase competition of Cu64Zr36 and its effect on glass forming ability of the alloy. Cryst. Res. Technol. 2013, 48, 11–15. [Google Scholar] [CrossRef]
- Kramer, M.J.; Xu, M.; Ye, Y.Y.; Sordelet, D.J.; Morris, J.R. Phase stability and transformations in the Zr2NixCu1−x Amorphous System. Metall. Mater. Trans. A 2007, 39, 1847–1856. [Google Scholar] [CrossRef]
- Cheung, T.L.; Shek, C.H. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses. J. Alloys Compd. 2007, 434, 71–74. [Google Scholar] [CrossRef]
- Ray, R.; Tanner, L.E. Metallic glasses with high strengths and high crystallization temperatures. J. Mater. Sci. 1980, 15, 1599–1600. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, C.; Zhang, X.; Inoue, A. Effects of additional noble elements on the thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater. Sci. Eng. A 2007, 449, 631–635. [Google Scholar] [CrossRef]
- Fan, C.; Liaw, P.K.; Wilson, T.W.; Dmowski, W.; Choo, H.; Liu, C.T.; Richardson, J.W.; Proffen, T. Structural model for bulk amorphous alloys. Appl. Phys. Lett. 2006, 89, 111905. [Google Scholar] [CrossRef]
- Huang, Y.J.; Shen, J.; Sun, J.F. Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 2007, 90, 81919. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhang, Z.F.; Mao, S.X. Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater. 2009, 57, 257–266. [Google Scholar] [CrossRef]
Sample | Percentage (%) | |||
---|---|---|---|---|
Size (Å) | ≤0.2 | 0.2–0.3 | 0.3–0.4 | ≥0.4 |
Zr2Cu | 0 | 66.7 | 33.3 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Li, H.; Yang, L. Free Volume Contributing to the Different Yield Behaviors between Tension and Compression Deformations in Metallic Glasses. Metals 2017, 7, 444. https://doi.org/10.3390/met7100444
Wang P, Li H, Yang L. Free Volume Contributing to the Different Yield Behaviors between Tension and Compression Deformations in Metallic Glasses. Metals. 2017; 7(10):444. https://doi.org/10.3390/met7100444
Chicago/Turabian StyleWang, Pengwei, Haiyang Li, and Liang Yang. 2017. "Free Volume Contributing to the Different Yield Behaviors between Tension and Compression Deformations in Metallic Glasses" Metals 7, no. 10: 444. https://doi.org/10.3390/met7100444
APA StyleWang, P., Li, H., & Yang, L. (2017). Free Volume Contributing to the Different Yield Behaviors between Tension and Compression Deformations in Metallic Glasses. Metals, 7(10), 444. https://doi.org/10.3390/met7100444