Modeling Inclusion Formation during Solidification of Steel: A Review
Abstract
:1. Introduction
2. Fundamentals
2.1. Microsegregation
2.1.1. Lever Rule
2.1.2. Scheil Model
2.1.3. Brody–Flemings Model and Clyne–Kurz Model
2.1.4. Ohnaka Model
2.1.5. Ueshima Model
2.2. Thermodynamics of Inclusion Formation
- , the reaction can happen in the right direction and the inclusion is stable.
- , the reaction proceeds towards the left and means that the inclusion will not precipitate.
- , the reaction reaches the equilibrium state, where Equation (14) is achieved.
2.3. Kinetics of Inclusion Formation
2.3.1. Nucleation
Homogeneous Nucleation
Heterogeneous Nucleation
2.3.2. Growth
Diffusion Controlled Growth
Collisions
Coarsening
2.3.3. Dissolution
2.3.4. Behavior of Inclusions at the Solidification Interface
3. Models on Inclusion Formation
3.1. Thermodynamic Models
3.2. Kinetic Models
3.2.1. The Liquid Process
3.2.2. During Solidification
4. Summary and Outlook
- For both microsegregation and inclusion formation simulations, links to thermodynamic databases offered a new development space. Meanwhile the unified thermodynamic parameters were achievable.
- In addition to the nucleation and growth of a single phase, modeling work on the competitive formation of various inclusions was appreciated to the multi-alloy steels. Another challenging aspect is the heterogeneous nucleation on existing inclusions. Most oxides are generated before solidification and their compositions and size distributions are prerequisite. The subsequently formed inclusions could heterogeneously nucleate on the oxides or other surfaces.
- During the solidification process, the behavior of particles at the solidifying front is necessary for a dedicated inclusion model. The collision of particles is one challenge due to the complex fluid field.
- Aside from the inclusions formed in the liquid, the precipitations in the solid phase also play an important role in the microstructure and properties of steel. In particular, carbides, sulfides, and nitrides, whose precipitation is strongly influenced by microsegregation, are expected to be considered. Furthermore, coarsening also influences the size distribution.
- The melting experiments and inclusion measurements were primary on improving and supporting the calculations.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millman, S. Clean steel-basic features and operation practices. In IISI Study on Clean Steel; Wünnenberg, K., Millman, S., Eds.; IISI Committee on Technology: Brussels, Belgium, 2004; pp. 39–60. [Google Scholar]
- Kiessling, R. Clean steel: A debatable concept. Met. Sci. 1980, 14, 161–172. [Google Scholar]
- Takamura, J.; Mizoguchi, S. Metallurgy of Oxides in Steels. I. Roles of Oxides in Steels Performance. In Proceedings of the Sixth International Iron and Steel Congress, Nagoya, Japan, 21–26 October 1990; pp. 591–597. [Google Scholar]
- Mizoguchi, S.; Takamura, J. Metallurgy of Oxides in Steels. II. Control of Oxides as Inoculants. In Proceedings of the Sixth International Iron and Steel Congress, Nagoya, Japan, 21–26 October 1990; pp. 598–604. [Google Scholar]
- Kang, Y.; Chang, C.; Park, S.; Khn, S.; Jung, I.; Lee, H. Thermodynamics of inclusions engineering in steelmaking and refining. Iron Steel Technol. 2006, 3, 154–162. [Google Scholar]
- Grong, Ø.; Kolbeinsen, L.; Van der Eijk, C.; Tranell, G. Microstructure Control of Steels through Dispersoid Metallurgy Using Novel Grain Refining Alloys. ISIJ Int. 2006, 46, 824–831. [Google Scholar] [CrossRef]
- Wijk, O. Inclusion engineering. In Proceedings of the 7th International Conference on Refining Processes, Lulea, Sweden, 7–8 June 1995; pp. 35–67. [Google Scholar]
- Campbell, J. An overview of the effects of bifilms on the structure and properties of cast alloys. Metall. Mater. Trans. A 2006, 37B, 857–863. [Google Scholar] [CrossRef]
- Campbell, J. The consolidation of metals: The origin of bifilms. J. Mater. Sci. 2016, 51, 96–106. [Google Scholar] [CrossRef]
- Bernhard, C.; Pierer, R.; Chimani, C. A new hot tearing criterion for the continuous casting of steel. In Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield, UK, 23–25 July 2007; pp. 525–530. [Google Scholar]
- Pierer, R.; Bernhard, C. The nature of internal defects in continuously cast steel and their impact on final product quality. In Proceedings of the Association Iron & Steel Technology Conference (AIST), Pittsburgh, PA, USA, 3–6 May 2010; pp. 193–203. [Google Scholar]
- Matsumiya, T. Mathematical analyses of segregations and chemical compositional changes of nonmetallic inclusions during solidification of steels. Metall. Trans. 1992, 33, 783–794. [Google Scholar] [CrossRef]
- Kraft, T.; Chang, Y.A. Predicting microstructure and microsegregation in multicomponent alloys. JOM J. Miner. Met. Mater. Soc. 1997, 49, 20–28. [Google Scholar] [CrossRef]
- Du, Q.; Jacot, A. A two–dimensional microsegregation model for the description of microstructure formation during solidification in multicomponent alloys. Acta Mater. 2005, 53, 3479–3493. [Google Scholar] [CrossRef]
- Andersson, O.J.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar]
- Miettinen, J.; Louhenkilpi, S.; Kytönen, H.; Laine, J. IDS: Thermodynamic–kinetic–empirical tool for modelling of solidification, microstructure and material properties. Math. Comput. Simul. 2010, 80, 1536–1550. [Google Scholar] [CrossRef]
- Griesser, S.; Reid, M.; Pierer, R.; Bernhard, C.; Dippenaar, R. In Situ Quantification of Micro-Segregation that Occurs During the Solidification of Steel. Steel Res. Int. 2014, 85, 1257–1265. [Google Scholar] [CrossRef]
- Rudnizki, J.; Zeislmair, B.; Prahl, U.; Bleck, W. Thermodynamical simulation of carbon profiles and precipitation evolution during high temperature case hardening. Steel Res. Int. 2010, 81, 472–476. [Google Scholar] [CrossRef]
- Röttger, A.; Weber, S.; Theisen, W.; Rajasekeran, B.; Vaßen, R. Diffusion and Phase Transformation at the Interface between an Austenitic Substrate and a Thermally Sprayed Coating of Ledeburitic Cold-Work Tool Steel. Steel Res. Int. 2011, 82, 671–682. [Google Scholar] [CrossRef]
- Scheil, E. Bemerkungen zur schichtkristallbildung. Z. Metallkunde 1942, 34, 70–72. [Google Scholar]
- Gulliver, G.H. The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met 1913, 9, 120–157. [Google Scholar]
- Kozeschnik, E. A Scheil-Gulliver model with back–diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys. Metall. Mater. Trans. A 2000, 31, 1682–1684. [Google Scholar] [CrossRef]
- Chen, Q.; Sundman, B. Computation of partial equilibrium solidification with complete interstitial and negligible substitutional solute back diffusion. Mater. Trans. 2002, 43, 551–559. [Google Scholar] [CrossRef]
- Brody, H.D.; Flemings, M.C. Solute redistribution in dendritic solidification. Tran. Metall. AIME 1966, 236, 615–624. [Google Scholar]
- Clyne, T.W.; Kurz, W. Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A 1981, 12, 965–971. [Google Scholar] [CrossRef]
- Ohnaka, I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Trans. ISIJ 1986, 26, 1045–1051. [Google Scholar] [CrossRef]
- You, D.; Bernhard, C.; Wieser, G.; Michelic, S. Microsegregation Model with local equilibrium partition coefficients during solidification of steels. Steel Res. Int. 2016, 87, 840–849. [Google Scholar] [CrossRef]
- Petersen, S.; Hack, K. The thermochemistry library ChemApp and its applications. Int. J. Mater. Res. 2007, 98, 935–945. [Google Scholar] [CrossRef]
- Ueshima, Y.; Mizoguchi, S.; Matusmiya, T.; Kajioka, H. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Metall. Trans. B 1986, 17, 845–859. [Google Scholar] [CrossRef]
- Seetharaman, S. Fundamentals of Metallurgy; CRC Press: Cambridge, UK, 2005. [Google Scholar]
- Volmer, M.; Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119, 277–301. [Google Scholar] [CrossRef]
- Becker, R.; Döring, W. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 1935, 416, 719–752. [Google Scholar] [CrossRef]
- Turnbull, D.; Fisher, J.C. Rate of Nucleation in Condensed Systems. J. Chem. Phys. 1949, 17, 71–73. [Google Scholar] [CrossRef]
- Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946. [Google Scholar]
- Zeldovich, J.B. On the theory of new phase formation: Cavitation. Acta Phys. 1943, 18, 1–22. [Google Scholar]
- Christian, J.W. The Theory of Transformations in Metals and Alloys; Newnes: Oxford, UK, 2002. [Google Scholar]
- Turpin, M.L.; Elliott, J.F. Nucleation of oxide inclusions in iron melts. J. Iron Steel Inst. 1966, 204, 217–225. [Google Scholar]
- Elliott, J.F.; Gleiser, M.; Ramakrishna, V. Thermochemistry for Steelmaking: Thermodynamic and Transport Properties; Addison-Wesley: Reading, UK, 1963; Volume 2. [Google Scholar]
- Rocabois, P.; Lehmann, J.; Gaye, H.; Wintz, M. Kinetics of precipitation of non-metallic inclusions during solidification of steel. J. Cryst. Growth 1999, 198, 838–843. [Google Scholar] [CrossRef]
- Turkdogan, E.T. Nucleation, Growth, and Flotation of Oxide Inclusions in Liquid Steel. Iron Steel Inst. 1966, 204, 914–919. [Google Scholar]
- Babu, S.S.; David, S.A.; Vitek, J.M.; Mundra, K.; Debroy, T. Development of macro- and microstructures of carbon-manganese low alloy steel welds. Mater Sci. Technol. 1995, 11, 186–199. [Google Scholar] [CrossRef]
- Allen, B.C.; Kingery, W.D. Surface tension and contact angles in some liquid metal–solid ceramic systems at elevated temperatures. Trans. AIME 1959, 215, 30–37. [Google Scholar]
- Nogi, K.; Ogino, K. Role of Interfacial Phenomena in Deoxidation Process of Molten Iron. Can. Metall. Quart. 2013, 22, 19–28. [Google Scholar] [CrossRef]
- Nishizawa, T.; Ohnuma, I.; Ishida, K. Correlation between interfacial energy and phase diagram in ceramic-metal systems. J. Phase Equilibria 2001, 22, 269–275. [Google Scholar] [CrossRef]
- Oikawa, K.; Ohtani, H.; Ishida, K.; Nishizawa, T. The control of the morphology of MnS inclusions in steel during solidification. ISIJ Int. 1995, 35, 402–408. [Google Scholar] [CrossRef]
- Oikawa, K.; Ishida, K.; Nishizawa, T. Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ Int. 1997, 37, 332–338. [Google Scholar] [CrossRef]
- Malmberg, K.J.; Shibata, H.; Kitamura, S.; Jönsson, P.G.; Nabeshima, S.; Kishimoto, Y. Observed behavior of various oxide inclusions in front of a solidifying low-carbon steel shell. J. Mater. Sci. 2010, 45, 2157–2164. [Google Scholar] [CrossRef]
- Osio, A.S.; Liu, S.; Olson, D.L. The effect of solidification on the formation and growth of inclusions in low carbon steel welds. Mater. Sci. Eng. A 1996, 221, 122–133. [Google Scholar] [CrossRef]
- Yan, P.; Guo, M.; Blanpain, B. In Situ Observation of the Formation and Interaction Behavior of the Oxide/Oxysulfide Inclusions on a Liquid Iron Surface. Metall. Mater. Trans. B 2014, 45, 903–913. [Google Scholar] [CrossRef]
- Ogino, K. Interfacial Phenomena in Iron and Steel Production. Bull. Jpn. Inst. Met. 1972, 11, 323–332. [Google Scholar]
- Popova, E. The Nucleation and Growth of Non-Metallic Inclusions in Bearing and Tube Steels. Izv. VUZov. Chernaya Metall. 1981, 4, 10–14. [Google Scholar]
- Pötchke, J. Periodic precipitation of oxides in molten copper PT.1. Metall 1970, 24, 123–130. [Google Scholar]
- Turnbull, D. Kinetics of Solidification of Supercooled Liquid Mercury Droplets. J. Chem. Phys. 1952, 20, 411–424. [Google Scholar] [CrossRef]
- Lindborg, U.; Torssell, K. A collision model for the growth and separation of deoxidation products. Trans. Metall. Soc. AIME 1968, 242, 94–102. [Google Scholar]
- Sakao, H.; Ito, K.; Wanibe, Y. Principles of deoxidation. Tetsu-to-Hagané 1971, 57, 1863–1882. [Google Scholar] [CrossRef]
- Suzuki, K.; Ban-ya, S.; Hino, M. Inclusion particle growth during solidification of stainless steel. ISIJ Int. 2001, 41, 247–256. [Google Scholar] [CrossRef]
- Voorhees, P.W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252. [Google Scholar] [CrossRef]
- Aaron, H.B.; Fainstein, D.; Kotler, G.R. Diffusion-Limited Phase Transformations: A Comparison and Critical Evaluation of the Mathematical Approximations. J. Appl. Phys. 1970, 41, 4404–4410. [Google Scholar] [CrossRef]
- Zener, C. Theory of Growth of Spherical Precipitates from Solid Solution. J. Appl. Phys. 1949, 20, 950–953. [Google Scholar] [CrossRef]
- Hong, T.; Debroy, T.; Babu, S.S.; David, S.A. Modeling of Inclusion Growth and Dissolution in the Weld Pool. Metall. Mater. Trans. B 2000, 31, 161–169. [Google Scholar] [CrossRef]
- Ohta, H.; Suito, H. Effects of dissolved oxygen and size distribution on particle coarsening of deoxidation product. ISIJ Int. 2006, 46, 42–49. [Google Scholar] [CrossRef]
- Hong, T.; Debroy, T. Time-temperature-transformation diagrams for the growth and dissolution of inclusions in liquid steels. Scr. Mater. 2001, 44, 847–852. [Google Scholar] [CrossRef]
- Maugis, P.; Mohamed, G. Kinetics of vanadium carbonitride precipitation in steel: A computer model. Acta Mater. 2005, 53, 3359–3367. [Google Scholar] [CrossRef] [Green Version]
- You, D.; Michelic, S.K.; Wieser, G.; Bernhard, C. Modeling of manganese sulfide formation during the solidification of steel. J. Mater. Sci. 2017, 52, 1797–1812. [Google Scholar] [CrossRef]
- Atkins, P.; De Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Emiliano, V.; Wang, Y.; Sridhar, S. In-Situ Observation of the Formation of MnS during Solidification of High Sulphur Steels. Steel Res. Int. 2004, 75, 247–256. [Google Scholar]
- Wang, Y.; Yang, J.; Xin, X.; Wang, R.; Xu, L. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels. Metall. Mater. Trans. B 2016, 47, 1378–1389. [Google Scholar] [CrossRef]
- Ham, F.K. Theory of diffusion-limited precipitation. J. Phys. Chem. Solids 1958, 6, 335–351. [Google Scholar] [CrossRef]
- Tozawa, H.; Kato, Y.; Sorimachi, K.; Nakanishi, T. Agglomeration and flotation of alumina clusters in molten steel. ISIJ Int. 1999, 39, 426–434. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, H. Numerical modeling of nucleation and growth of inclusions in molten steel based on mean processing parameters. ISIJ Int. 2004, 44, 1629–1638. [Google Scholar] [CrossRef]
- Lei, H.; Nakajima, K.; He, J. Mathematical model for nucleation, Ostwald ripening and growth of inclusion in molten steel. ISIJ Int. 2010, 50, 1735–1745. [Google Scholar] [CrossRef]
- Greenwood, G.W. The growth of dispersed precipitates in solutions. Acta Metall. 1956, 4, 243–248. [Google Scholar] [CrossRef]
- Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50. [Google Scholar] [CrossRef]
- Whelan, M.J. On the kinetics of precipitate dissolution. Met. Sci. 2013, 3, 95–97. [Google Scholar] [CrossRef]
- Thomas, G.; Whelan, M.J. Observations of precipitation in thin foils of aluminium +4% copper alloy. Philos. Mag. 1961, 6, 1103–1114. [Google Scholar] [CrossRef]
- Uhlmann, D.R.; Chalmers, B.; Jackson, K.A. Interaction between particles and a solid-liquid interface. J. Appl. Phys. 1964, 35, 2986–2993. [Google Scholar] [CrossRef]
- Shangguan, D.; Ahuja, S.; Stefanescu, D.M. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface. Metall. Trans. A 1992, 23, 669–680. [Google Scholar] [CrossRef]
- Wu, S.; Nakae, H. Behavior of particles at solidification interface in particle dispersed metal-matrix composites. J. Jpn. Foundry Eng. Soc. 1997, 69, 775–782. [Google Scholar]
- Kaptay, G. Interfacial criterion of spontaneous and forced engulfment of reinforcing particles by an advancing solid/liquid interface. Mater. Trans. A 2001, 32, 993–1005. [Google Scholar] [CrossRef]
- Garvin, J.W.; Yang, Y.; Udaykumar, H.S. Multiscale modeling of particle–solidification front dynamics. Part II: Pushing–engulfment transition. Int. J. Heat Mass Transf. 2007, 50, 2969–2980. [Google Scholar] [CrossRef]
- Yin, H.; Shibata, H.; Emi, T.; Suzuki, M. “In-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts. ISIJ Int. 1997, 37, 936–945. [Google Scholar] [CrossRef]
- Shibata, H.; Yin, H.; Yoshinaga, S.; Emi, T.; Suzuki, M. In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface. ISIJ Int. 1998, 38, 149–156. [Google Scholar] [CrossRef]
- Kimura, S.; Nabeshima, Y.; Nakajima, K.; Mizoguchi, S. Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels. Metall. Mater. Trans. B 2000, 31, 1013–1021. [Google Scholar] [CrossRef]
- Wang, Y.; Valdez, M.; Sridhar, S. Liquid and solid inclusions at advancing steel solidification fronts. Z. Metallkunde 2002, 93, 12–20. [Google Scholar] [CrossRef]
- Stefanescu, D.M.; Catalina, A.V. Calculation of the critical velocity for the pushing/engulfment transition of nonmetallic inclusions in steel. ISIJ Int. 1998, 38, 503–505. [Google Scholar] [CrossRef]
- Potschke, J.; Rogge, V. On the behavior of freezing particles at an advancing solid-liquid interface. J. Cryst. Growth 1989, 94, 726–738. [Google Scholar] [CrossRef]
- Ohta, H.; Suito, H. Dispersion Behavior of MgO, ZrO2, Al2O3, CaO-Al2O3 and MnO-SiO2 deoxidation particles during solidification of Fe–10mass% Ni alloy. ISIJ Int. 2006, 46, 22–28. [Google Scholar] [CrossRef]
- Yamada, W.; Matsumiya, T.; Ito, A. Development of simulation model for composition change of nonmetallic inclusions during solidification of steels. In Proceedings of the Sixth International Iron and Steel Congress, Nagoya, Japan, 21–26 October 1990; pp. 618–625. [Google Scholar]
- Eriksson, G. Thermodynamics studies of high temperature equilibria. 3. SOLGAS, a computer program for calculating composition and heat condition of an equilibrium mixture. Acta Chem. Scand. 1971, 25, 2651–2658. [Google Scholar] [CrossRef]
- Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfoud, R.; Melançon, J.; Pelton, A.D.; Petersen, S.; Robelin, C.; et al. FactSage thermochemical software and databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
- Yamada, W.; Matsumiya, T.; Sundman, B. Development of a simulator of solidification path and formation of nonmetallic inclusions during solidification of stainless steels. In Computer Aided Innovation of New Materials; Elsevier Science & Technology: Amsterdam, The Netherland, 1990; pp. 587–590. [Google Scholar]
- Thermo–Calc. Available online: http://www.thermocalc.com/ (accessed on 6 September 2017).
- Ueshima, Y.; Isobe, K.; Mizoguchi, S.; Kajioka, H. Analysis of the Rate of Crystallization and Precipitation of MnS in the Resulphurized Free-cutting Steel. Tetsu-to-Hagané 1988, 74, 465–472. [Google Scholar] [CrossRef]
- Isobe, K.; Ueshima, Y.; Maede, H.; Mizoguchi, S.; Ishikawa, A.; Kudo, I. Mechanism of MnS Formation in Low-Carbon Resulphurized Free-Cutting Steel and Effect of Cooling Rate on Formation Behavior of MnS. In Proceedings of the Sixth International Iron and Steel Congress, Nagoya, Japan, 21–26 October 1990; pp. 634–641. [Google Scholar]
- Lehmann, J.; Gaye, H.; Rocabois, P. The IRSID slag model for steelmaking process control. In Proceedings of the 2nd International Conference on Mathematical Modeling and Computer Simulation of Metal Technologies, Ariel, Israel, 2000; pp. 89–96. [Google Scholar]
- Wintz, M.; Bobadilla, M.; Lehmann, J. Microsegregation and precipitation of nonmetallic inclusions during solidification of steels: A modelling and experimental study. In Proceedings of the 4th Decennial International Conference on Solidification Processing, Sheffield, UK, 7–10 July 1997; pp. 226–229. [Google Scholar]
- Wintz, M.; Bobadilla, M.; Lehmann, J.; Gaye, H. Experimental study and modeling of the precipitation of non–metallic inclusions during solidification of steel. ISIJ Int. 1995, 35, 715–722. [Google Scholar] [CrossRef]
- Choudhary, S.K.; Ghosh, A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int. 2009, 49, 1819–1827. [Google Scholar] [CrossRef]
- FactSage. Available online: http://www.factsage.com/ (accessed on 6 September 2017).
- Nurmi, S.; Louhenkilpi, S.; Holappa, L. Thermodynamic evaluation of inclusions formation and behaviour in steels during casting and solidification. Steel Res. Int. 2009, 80, 436–440. [Google Scholar]
- Holappa, L.; Nurmi, S.; Louhenkilpi, S.; Antola, T. Thermodynamic evaluation for inclusion formation in high carbon and spring steels. In Proceedings of the 7th International Conference on Clean Steel, Balatonfüred, Hungary, 4–6 June 2007; pp. 76–86. [Google Scholar]
- Holappa, L.; Hamalainen, M.; Liukkonen, M.; Lind, M. Thermodynamic examination of inclusion modification and precipitation from calcium treatment to solidified steel. Ironmak. Steelmak. 2003, 30, 111–115. [Google Scholar] [CrossRef]
- You, D.; Michelic, S.K.; Bernhard, C.; Loder, D.; Wieser, G. Modeling of inclusion formation during the solidification of steel. ISIJ Int. 2016, 56, 1770–1778. [Google Scholar] [CrossRef]
- MTDATA. Available online: http://resource.npl.co.uk/mtdata/mtdatasoftware.htm (accessed on 6 September 2017).
- MATCALC. Available online: http://matcalc.tuwien.ac.at/ (accessed on 6 September 2017).
- Mathew, P.M.; Kapoor, M.L.; Frohberg, M.G. Manganese–Oxygen Equilibrium in Liquid Fe at 1600 °C. Arch. Eisenhuttenwesen 1972, 43, 865–872. [Google Scholar]
- Babu, S.S.; David, S.A.; Vitek, J.M.; Mundra, K. Model for inclusion formation in low alloy steel welds. Sci. Technol. Weld. Join. 1999, 4, 276–284. [Google Scholar] [CrossRef]
- Hong, T.; Debroy, T. Effects of time, temperature, and steel composition on growth and dissolution of inclusions in liquid steels. Ironmak. Steelmak. 2013, 28, 450–454. [Google Scholar] [CrossRef]
- Zhang, L.; Pluschkell, W. Nucleation and growth kinetics of inclusions during liquid steel deoxidation. Ironmak. Steelmak. 2013, 30, 106–110. [Google Scholar] [CrossRef]
- Zhang, L.; Pluschkell, W.; Thomas, B.G. Nucleation and growth of alumina inclusions during steel deoxidation. In Proceedings of the 85th Steelmaking Conference Proceedings, Nashville, TN, USA, 10–13 March 2002; pp. 463–476. [Google Scholar]
- Goto, H.; Miyazawa, K.; Honma, H. Effect of the primary oxide on the behavior of the oxide precipitating during solidification of steel. ISIJ Int. 1996, 36, 537–542. [Google Scholar] [CrossRef]
- Goto, H.; Miyazawa, K.; Yamada, W.; Tanaka, K. Effect of cooling rate on composition of oxides precipitated during solidification of steels. ISIJ Int. 1995, 35, 708–714. [Google Scholar] [CrossRef]
- Goto, H.; Miyazawa, K.; Yamaguchi, K.; Ogibayashi, S.; Tanaka, K. Effect of Cooling Rate on Oxide Precipitation during Solidification of Low Carbon Steels. ISIJ Int. 1994, 34, 414–419. [Google Scholar] [CrossRef]
- Ma, Z.; Janke, D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ Int. 1998, 38, 46–52. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, J.; Cai, K. A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel. ISIJ Int. 2002, 42, 958–963. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, G.G.; Li, S.J.; Zhao, M.; Feng, G.P. Characteristics of MgAl2O4-TiN complex inclusion precipitation and growth during solidification of GCr15SiMn in ESR process. ISIJ Int. 2015, 55, 1693–1698. [Google Scholar] [CrossRef]
- Kluken, A.O.; Grong, Ø. Mechanisms of inclusion formation in Al-Ti-Si-Mn deoxidized steel weld metals. Metall. Trans. A 1989, 20, 1335–1349. [Google Scholar] [CrossRef]
- Gaye, H.; Rocabois, P.; Lehmann, J.; Bobadilla, M. Kinetics of inclusion precipitation during steel solidification. Steel Res. 1999, 70, 356–361. [Google Scholar] [CrossRef]
- Lehmann, J.; Rocabois, P.; Gaye, H. Kinetic model of non-metallic inclusions’ precipitation during steel solidification. J. Non-Cryst. Solids 2001, 282, 61–71. [Google Scholar] [CrossRef]
- Perez, M.; Dumont, M.; Acevedo, D. Implementation of classical nucleation and growth theories for precipitation. Acta Mater. 2008, 56, 2119–2132. [Google Scholar] [CrossRef]
- Nakaoka, T.; Taniguchi, S.; Matsumoto, K.; Johansen, S.T. Particle-size-grouping method of inclusion agglomeration and its application to water model experiments. ISIJ Int. 2001, 41, 1103–1111. [Google Scholar] [CrossRef]
- Ackermann, P.; Kurz, W.; Heinemann, W. In situ tensile testing of solidifying aluminum and Al-Mg shells. Mater. Sci. Eng. 1985, 75, 79–86. [Google Scholar] [CrossRef]
- Bernhard, C.; Hiebler, H.; Wolf, M.M. Simulation of Shell Strength Properties by the SSCT Test. ISIJ Int. 1996, 36, S163–S166. [Google Scholar] [CrossRef]
- Arth, G.; Ilie, S.; Pierer, R.; Bernhard, C. Experimental and numerical investigations on hot tearing during continuous casting of steel. BHM Berg- und Hüttenmännische Monatshefte 2015, 160, 103–108. [Google Scholar] [CrossRef]
- Bellot, J.; Descotes, V.; Jardy, A. Numerical modeling of inclusion behavior in liquid metal processing. JOM J. Miner. Met. Mater. Soc. 2013, 65, 1164–1172. [Google Scholar] [CrossRef]
- Descotes, V.; Bellot, J.P.; Witzke, S.; Jardy, A. Modeling the titanium nitride (TiN) germination and growth during the solidification of a maraging steel. In Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, Austin, TX, USA, 22–25 September 2013; pp. 201–206. [Google Scholar]
- Dantzig, J.A.; Rappaz, M. Solidification; EPFL Press: Lausanne, Switzerland, 2009. [Google Scholar]
Inclusion Types | Interfacial Energies (j/m2) |
---|---|
Al2O3 | 1.5 [37]; 1.8 [45]; 2.0 [44]; 2.27 [46]; 1.32–0.777 ln(1 + 40) 1 [47] |
Ti3O5 | 1.0 [48]; 1.32–0.777 ln(1 + 40) [47] |
SiO2 | 1.4 [44]; 1.47 ± 0.23 [49]; 1.7 [50]; 0.9 [37,51] |
MnO | 0.6 [44]; 1.45 [52]; 1.45 ± 0.23 [49]; 1.2 [51] |
CaO | 1.5 [44]; 1.7 [50] |
MgO | 1.2–1.8 [51] |
FeO | 0.18 [51]; 0.3 [37]; 1.32–0.777 ln(1 + 40) 1 [47] |
MnS | 0.7 [44]; 0.2–1.0 [45] |
TiN | 0.3 [44] |
AlN | 1.0 [44] |
Process | Author | Year | Reference | Inclusion Stability | Microsegregation | Annotations | |
---|---|---|---|---|---|---|---|
Model | Temperature | ||||||
Solidification | Yamada | 1990 | [88] | SOLGASMIX | Clyne-Kurz | Based on Fe-C phase diagram | Additional thermodynamic data |
Yamada | 1991 | [91] | Thermocalc | Clyne-Kurz | Multi-components | Unified thermodynamics | |
Ueshima | 1990 | [93] | Empirical | Ueshima | Based on Fe-C phase diagram | MnS form in liquid and solid | |
Wintz | 1995 | [96,97] | CEQCSI | Clyne-Kurz | Multi-components | Solution phase is possible | |
Choudhary | 2009 | [98] | FactSage | Clyne-Kurz | Based on Fe-C phase diagram | Methodology | |
Nurmi | 2010 | [100] | ChemApp | IDS | Multi-components | Solution phase is possible | |
You | 2016 | [103] | ChemApp | Ohnaka | Multi-components | Unified thermodynamics |
Process | Author | Year | Reference | Inclusion Stability | Number | Size | Microsegregation Model | Annotations | |
---|---|---|---|---|---|---|---|---|---|
Growth | Collision | ||||||||
Solidification | Goto | 1994 | [111,112,113] | Empirical 1 | Constant | Diffusion | - | Ohnaka | Mean size |
Osio | 1996 | [45] | Empirical | CN 2 | Diffusion | - | Scheil | Size distribution | |
Ma | 1998 | [114] | Empirical | Constant | Mass balance | - | Ohnaka | Mean size | |
Rocabois | 1999 | [39,118] | CEQCSI | CN | Diffusion and reaction | - | Lever Rule | Size distribution | |
Lehmann | 2001 | [119] | CEQCSI | CN | Diffusion and reaction | - | Lever Rule | Size distribution (Solution phase) | |
Suzuki | 2001 | [56] | Empirical | Constant | Diffusion | Ueshima | Mean size | ||
Liu | 2002 | [115] | Empirical | Constant | Mass balance | - | Ueshima | Mean size | |
Descotes | 2013 | [126] | Empirical | CN | Diffusion and reaction | - | Lever Rule | Heterogeneous nucleation | |
You | 2017 | [64] | Empirical or ChemApp | CN | Diffusion | Yes 3 | Ohnaka | Size distribution |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, D.; Michelic, S.K.; Presoly, P.; Liu, J.; Bernhard, C. Modeling Inclusion Formation during Solidification of Steel: A Review. Metals 2017, 7, 460. https://doi.org/10.3390/met7110460
You D, Michelic SK, Presoly P, Liu J, Bernhard C. Modeling Inclusion Formation during Solidification of Steel: A Review. Metals. 2017; 7(11):460. https://doi.org/10.3390/met7110460
Chicago/Turabian StyleYou, Dali, Susanne K. Michelic, Peter Presoly, Jianhua Liu, and Christian Bernhard. 2017. "Modeling Inclusion Formation during Solidification of Steel: A Review" Metals 7, no. 11: 460. https://doi.org/10.3390/met7110460
APA StyleYou, D., Michelic, S. K., Presoly, P., Liu, J., & Bernhard, C. (2017). Modeling Inclusion Formation during Solidification of Steel: A Review. Metals, 7(11), 460. https://doi.org/10.3390/met7110460