Collagen-Nanoparticles Composites for Wound Healing and Infection Control
Abstract
:1. Introduction
2. Challenges in Antimicrobial Therapy
3. Wound Management and Healing
- If the wound healing occurs in normal physiological conditions, restoration of a functional epidermal barrier is highly efficient, while postnatal repair of the deeper dermal layer is less present, resulting in a scar with a substantial loss of original tissue structure and function;
- If the normal repair process goes wrong, producing an ulcerative skin defect or an excessive formation of scar tissue (which may be a hypertrophic scar or keloid) [23].
4. Collagen: Structure and Properties in Wound Management
5. Collagen-Inorganic Nanoparticles Composites
5.1. Collagen-Silver (Ag) NPs Composites
5.2. Collagen-Copper Oxide (CuO) NPs Composites
5.3. Functionalized Collagen Hydrogels for Wound Healing Applications
6. The Role of Vascular Endothelial Growth Factor in Wound Healing
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo) 2017, 70, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Pérez-Gracia, M.T. The antimicrobial therapy of the future: Combating resistances. J. Infect. Dis. Ther. 2014, 2, 146. [Google Scholar] [CrossRef]
- Wu, H.; Moser, C.; Wang, H.Z.; Høiby, N.; Song, Z.J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Simões, M. Antimicrobial strategies effective against infectious bacterial biofilms. Curr. Med. Chem. 2011, 18, 2129–2145. [Google Scholar] [CrossRef] [PubMed]
- Mureşan, A.; Sârbu, I.; Pelinescu, D.; Ionescu, R.; Csutak, O.; Stoica, I.; Rusu, E.; Vassu-Dimov, T. Virulence profiles of pathogenic bacterial strains isolated from different sources. Biointerface Res. Appl. Chem. 2016, 6, 1631–1636. [Google Scholar]
- Ip, M.; Lui, S.L.; Poon, V.K.; Lung, I.; Burd, A. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol. 2006, 55, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Păunica-Panea, G.; Ficai, A.; Marin, M.M.; Marin, Ş.; Albu, M.G.; Constantin, V.D.; Dinu-Pîrvu, C.; Vuluga, Z.; Corobea, M.C.; Ghica, M.V. New collagen-dextran-zinc oxide composites for wound dressing. J. Nanomater. 2016. [Google Scholar] [CrossRef]
- Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016, 31, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 2016, 24, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Antibiotic/Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 21 May 2017).
- Renvall, S.; Niinikoski, J.; Aho, A.J. Wound infections in abdominal surgery. A prospective study on 696 operations. Acta Chir. Scand. 1980, 146, 25–30. [Google Scholar] [PubMed]
- Kanj, S.S.; Kanafani, Z.A. Current concepts in antimicrobial therapy against resistant Gram-negative organisms: Extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc. 2011, 86, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Aloush, V.; Navon-Venezia, S.; Seigman-Igra, Y.; Cabili, S.; Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob. Agents Chemother. 2006, 50, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Merezeanu, N.; Gheorghe, I.; Popa, M.; Chifiriuc, M.C.; Lazăr, V.; Pântea, O.; Banu, O.; Bolocan, A.; Grigore, R.; Berteşteanu, Ş.V. Virulence and resistance features of Pseudomonas aeruginosa strains isolated from patients with cardiovascular diseases. Biointerface Res. Appl. Chem. 2016, 6, 1117–1121. [Google Scholar]
- Ionescu, B.; Ionescu, D.; Gheorghe, I.; Mihaescu, G.; Bleotu, C.; Sakizlian, M.; Banu, O. Staphylococcus aureus virulence phenotypes among Romanian population. Biointerface Res. Appl. Chem. 2015, 5, 945–948. [Google Scholar]
- Ionescu, D.; Chifiriuc, M.C.; Ionescu, B.; Cristea, V.; Sacagiu, B.; Duta, M.; Neacsu, G.; Gilca, R.; Gheorghe, I.; Curutiu, C.; et al. Study of virulence gene profiles in β-hemolytic Streptococcus sp. strains. Biointerface Res. Appl. Chem. 2016, 6, 1607–1611. [Google Scholar]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [PubMed]
- Tzaneva, V.; Mladenova, I.; Todorova, G.; Petkov, D. Antibiotic treatment and resistance in chronic wounds of vascular origin. Clujul Med. 2016, 89, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, H.P.; Longaker, M.T.; Perkocha, L.A.; Jennings, R.W.; Harrison, M.R.; Adzick, N.S. Scarless wound repair: A human fetal skin model. Development 1992, 114, 253–259. [Google Scholar] [PubMed]
- Vidal, P.; Dickson, M.G. Regeneration of the distal phalanx: A case report. J. Hand Surg. Br. 1993, 18, 230–233. [Google Scholar] [CrossRef]
- Mihai, M.M.; Holban, A.M.; Giurcăneanu, C.; Popa, L.G.; Buzea, M.; Filipov, M.; Lazăr, V.; Chifiriuc, M.C.; Popa, M.I. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom. J. Morphol. Embryol. 2014, 55, 1401–1408. [Google Scholar] [PubMed]
- Mihai, M.M.; Holban, A.M.; Giurcaneanu, C.; Popa, L.G.; Oanea, R.M.; Lazar, V.; Chifiriuc, M.C.; Popa, M.; Popa, M.I. Microbial biofilms: Impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr. Top. Med. Chem. 2015, 15, 1552–1576. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, A.; Cirioni, O.; Schimizzi, A.M.; Del Prete, M.S.; Barchiesi, F.; D’Errico, M.M.; Petrelli, E.; Scalise, G. Epidemiology and microbiology of surgical wound infections. J. Clin. Microbiol. 2000, 38, 918–922. [Google Scholar] [PubMed]
- Almeida, T.; Valverde, T.; Martins-Júnior, P.; Ribeiro, H.; Kitten, G.; Carvalhaes, L. Morphological and quantitative study of collagen fibers in healthy and diseased human gingival tissues. Rom. J. Morphol. Embryol. 2015, 56, 33–40. [Google Scholar] [PubMed]
- Neagu, T.P.; Ţigliş, M.; Cocoloş, I.; Jecan, C.R. The relationship between periosteum and fracture healing. Rom. J. Morphol. Embryol. 2016, 57, 1215–1220. [Google Scholar] [PubMed]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3. [Google Scholar] [CrossRef] [PubMed]
- Luz, G.M.; Mano, J.F. Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Compos. Sci. Technol. 2010, 70, 1777–1788. [Google Scholar] [CrossRef]
- Trandafir, V.; Popescu, G.; Albu, M.G.; Iovu, H.; Georgescu, M. Bioproducts Based on Collagen; Ars Docendi Publishing House: Bucharest, Romania, 2007; pp. 17–20. ISBN 978-973-558-291-3. [Google Scholar]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Grigore, M.E. Hydrogels for cardiac tissue repair and regeneration. J. Cardiovasc. Med. Cardiol. 2017, 4. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Nyström, A.; Velati, D.; Mittapalli, V.R.; Fritsch, A.; Kern, J.S.; Bruckner-Tuderman, L. Collagen VII plays a dual role in wound healing. J. Clin. Investig. 2013, 123, 3498–3509. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R.; Avci, P.; Prow, T.W. Preface. In Nanoscience in Dermatology, 1st ed.; Hamblin, M.R., Avci, P., Prow, T.W., Eds.; Academic Press-Elsevier: London, UK, 2016; pp. 287–306. ISBN 978-0-12-802926-8. [Google Scholar]
- Oyarzun-Ampuero, F.; Vidal, A.; Concha, M.; Morales, J.; Orellana, S.; Moreno-Villoslada, I. Nanoparticles for the treatment of wounds. Curr. Pharm. Des. 2015, 21, 4329–4341. [Google Scholar] [CrossRef] [PubMed]
- Fufă, O.; Andronescu, E.; Grumezescu, V.; Holban, A.M.; Mogoantă, L.; Mogoşanu, G.D.; Socol, G.; Iordache, F.; Chifiriuc, M.C.; Grumezescu, A.M. Silver nanostructurated surfaces prepared by MAPLE for biofilm prevention. Biointerface Res. Appl. Chem. 2015, 5, 1011–1017. [Google Scholar]
- De la Fuente, J.M.; Grazu, V. (Eds.) Nanobiotechnology: Inorganic Nanoparticles vs. Organic Nanoparticles, 1st ed.; Book Series: Frontiers of Nanoscience; Elsevier: Oxford, UK, 2012; Volume 4, pp. 36–38. ISBN 978-0-12-415769-9. [Google Scholar]
- Vasanth, S.B.; Kurian, G.A. Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465. [Google Scholar] [CrossRef]
- Takamiya, A.S.; Monteiro, D.R.; Bernabé, D.G.; Gorup, L.F.; Camargo, E.R.; Gomes-Filho, J.E.; Oliveira, S.H.; Barbosa, D.B. In vitro and in vivo toxicity evaluation of colloidal silver nanoparticles used in endodontic treatments. J. Endod. 2016, 42, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014, 55, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Hu, D.; Cheng, E.W.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, V.; Krishnamoorthy, R.; Gopal, B.; Veeraravagan, V.; Neelamegam, P. Systematic investigation on hydrazine hydrate assisted reduction of silver nanoparticles and its antibacterial properties. Inorg. Nano-Metal Chem. 2017, 47, 761–767. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Y.; Guo, J.; Wu, H.; Wang, J.; Wu, G. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int. J. Mol. Sci. 2016, 17, 334. [Google Scholar] [CrossRef] [PubMed]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Abirami, S.; Mahalakshmi, V. Anticancer and antibacterial activity of silver nanoparticles biosynthesized by Penicillium spp. and its synergistic effect with antibiotics. J. Microbiol. Biotechnol. Res. 2013, 3, 54–71. [Google Scholar]
- Buszewski, B.; Railean-Plugaru, V.; Pomastowski, P.; Rafińska, K.; Szultka-Mlynska, M.; Golinska, P.; Wypij, M.; Laskowski, D.; Dahm, H. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. Infect. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.H.; Lin, K.S.; Ke, W.J.; Hsieh, C.T.; Chiang, C.L.; Tzou, D.Y.; Liu, S.T. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE 2015, 10, e0144306. [Google Scholar] [CrossRef] [PubMed]
- Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, E.I.; Udekwu, K.I.; Noel, C.W.; Gagnon, L.B.; Taylor, P.K.; Vulesevic, B.; Simpson, M.J.; Gkotzis, S.; Islam, M.M.; Lee, C.J.; et al. Safety and efficacy of composite collagen-silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale 2015, 7, 18789–18798. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.S.; Quelemes, P.V.; Amorin, A.; Primo, F.L.; Gobo, G.G.; Tedesco, A.C.; Mafud, A.C.; Mascarenhas, Y.P.; Corrêa, J.R.; Kuckelhaus, S.A.; et al. Collagen-based silver nanoparticles for biological applications: Synthesis and characterization. J. Nanobiotechnol. 2014, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrascu, J.M.; Nedelcu, I.A.; Sonmez, M.; Ficai, D.; Ficai, A.; Vasile, B.S.; Ungureanu, C.; Albu, M.G.; Andor, B.; Andronescu, E.; et al. Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomater. 2015, 2015, 587989. [Google Scholar] [CrossRef]
- Spoiala, A.; Voicu, G.; Ficai, D.; Ungureanu, C.; Albu, M.G.; Vasile, B.S.; Ficai, A.; Andronescu, E. Collagen/TiO2-Ag composite nanomaterials for antimicrobial applications. UPB Sci. Bull. Ser. B 2015, 77, 275–290. [Google Scholar]
- You, C.; Li, Q.; Wang, X.; Wu, P.; Ho, J.K.; Jin, R.; Zhang, L.; Shao, H.; Han, C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 2017, 7, 10489. [Google Scholar] [CrossRef] [PubMed]
- Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel) 2016, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.H.; Tsai, P.H.; Lin, K.S. pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int. J. Mol. Sci. 2017, 18, 793. [Google Scholar] [CrossRef] [PubMed]
- Premlatha, T.S.; Kothai, S. Synthesis and characterization of collagen copper oxide nanocomposites incorporated with herb and their antibacterial applications. Int. J. Innov. Res. Sci. Eng. 2016, 4, 130–135. [Google Scholar]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.Y.; HoonByeon, J.; Park, J.H.; Hwang, J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 2007, 373, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Baniasadi, M.; Minary-Jolandan, M. Alginate-collagen fibril composite hydrogel. Materials (Basel) 2015, 8, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Sekar, S.; Chandrasekaran, N.; Mukherjee, A.; Sastry, T.P. Synthesis, characterization and evaluation of collagen scaffolds crosslinked with aminosilane functionalized silver nanoparticles: In vitro and in vivo studies. J. Mater. Chem. B Mater. Biol. Med. 2015, 3, 3032–3043. [Google Scholar] [CrossRef]
- Albu, M.G.; Vladkova, T.G.; Ivanova, I.A.; Shalaby, A.S.; Moskova-Doumanova, V.S.; Staneva, A.D.; Dimitriev, Y.B.; Kostadinova, A.S.; Topouzova-Hristova, T.I. Preparation and biological activity of new collagen composites, Part I: Collagen/zinc titanate nanocomposites. Appl. Biochem. Biotechnol. 2016, 180, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hélary, C.; Coradin, T. Local and sustained gene delivery in silica-collagen nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, T.H.; Kang, M.S.; Kim, H.W. Angiogenic effects of collagen/mesoporous nanoparticle composite scaffold delivering VEGF165. BioMed Res. Int. 2016, 2016, 9676934. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Kodra, A.; Tomic-Canic, M.; Golinko, M.S.; Ehrlich, H.P.; Brem, H. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 2009, 153, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Wilgus, T.A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wong, K.K.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007, 2, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Bereznicki, L. Factors affecting wound healing. Aust. Pharm. 2012, 31, 484–487. [Google Scholar]
- Gould, L.J. Topical collagen-based biomaterials for chronic wounds: Rationale and clinical application. Adv. Wound Care 2016, 5, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [PubMed]
Threats | Drug-Resistant Microbes |
---|---|
Urgent threats | Clostridium difficile (C-diff) |
Carbapenem-resistant Enterobacteriaceae (CRE) | |
Neisseria gonorrhoeae | |
Serious threats | Multidrug-resistant Acinetobacter |
Drug-resistant Campylobacter | |
Fluconazole-resistant Candida | |
Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae | |
Vancomycin-resistant Enterococcus (VRE) | |
Multidrug-resistant Pseudomonas aeruginosa | |
Drug-resistant non-typhoidal Salmonella | |
Drug-resistant Salmonella enterica serotype typhi | |
Drug-resistant Shigella | |
Methicillin-resistant Staphylococcus aureus (MRSA) | |
Drug-resistant Streptococcus pneumoniae | |
Drug-resistant tuberculosis | |
Concerning threats | Vancomycin-resistant S. aureus (VRSA) |
Erythromycin-resistant Group A Streptococcus | |
Clindamycin-resistant Group B Streptococcus |
Type | Class | Distribution |
---|---|---|
I | Fibrillar | Dermis, bone, tendon |
II | Fibrillar | Cartilage, vitreous |
III | Fibrillar | Blood vessels |
IV | Network | Basement membranes |
V | Fibrillar | Dermis, bone, tendon |
VI | Filaments, 100 nm | Dermis, bone, tendon |
VII | Fibers with antiparallel dimers | Dermis, bladder |
VIII | Hexagonal matrix | Membrane |
IX | Fibril-associated collagens with interrupted triple helices | Cartilage, vitreous |
X | Hexagonal matrix | Cartilage |
XI | Fibrillar | Cartilage |
XII | Fibril-associated collagens with interrupted triple helices | Tendon |
Bacterial Strain | MBC (μg/mL) | ||
---|---|---|---|
Ag | CuO | ZnO | |
Staphylococcus aureus (Golden) | 100 | 2500 | 2500 |
S. aureus (Oxford) | 100 | 100 | 5000 |
Escherichia coli NCTC (National Collection of Type Cultures) 9001 | 100 | 250 | >5000 |
Pseudomonas aeruginosa PAO1 | 100 | 5000 | >5000 |
Proteus spp. | 100 | 5000 | >5000 |
S. epidermidis SE-4 | 100 | 2500 | 2500 |
Meticillin-resistant S. aureus 252 | 100 | 1000 | >5000 |
Epidemic meticillin-resistant S. aureus 15 | 100 | 250 | 5000 |
Epidemic meticillin-resistant S. aureus 16 | 100 | 1000 | 5000 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigore, M.E.; Grumezescu, A.M.; Holban, A.M.; Mogoşanu, G.D.; Andronescu, E. Collagen-Nanoparticles Composites for Wound Healing and Infection Control. Metals 2017, 7, 516. https://doi.org/10.3390/met7120516
Grigore ME, Grumezescu AM, Holban AM, Mogoşanu GD, Andronescu E. Collagen-Nanoparticles Composites for Wound Healing and Infection Control. Metals. 2017; 7(12):516. https://doi.org/10.3390/met7120516
Chicago/Turabian StyleGrigore, Mădălina Elena, Alexandru Mihai Grumezescu, Alina Maria Holban, George Dan Mogoşanu, and Ecaterina Andronescu. 2017. "Collagen-Nanoparticles Composites for Wound Healing and Infection Control" Metals 7, no. 12: 516. https://doi.org/10.3390/met7120516
APA StyleGrigore, M. E., Grumezescu, A. M., Holban, A. M., Mogoşanu, G. D., & Andronescu, E. (2017). Collagen-Nanoparticles Composites for Wound Healing and Infection Control. Metals, 7(12), 516. https://doi.org/10.3390/met7120516