Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arsenic Compositions in Concentrate and Smelting System
2.2. Research Methodology
3. Results
3.1. Reaction Mechanism of Arsenic in SKS Smelting Process
3.2. Arsenic Distribution Behavior in SKS Process and Other Processes
3.2.1. Difference of Oxygen Potential and Volatilization
3.2.2. Difference of Smelting Temperature and Reaction Intensity
3.2.3. Difference of Mass Transfer Process of Arsenic
3.3. Effects of Operation Parameters on Arsenic Distribution Behavior
3.3.1 Effects of Matte Grade
3.3.2 Effects of Oxygen Concentrations in Air
3.3.3 Effects of the Oxygen/Ore Ratio
3.3.4. Effects of the Ratio of Fe/SiO2 in Slag
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kobayashi, Y.; Hirano, S. Distribution and excretion of arsenic metabolites after oral administration of seafood-related organoarsenicals in rats. Metals 2016, 6, 231. [Google Scholar] [CrossRef]
- Dosmukhamedov, N.; Kaplan, V. Efficient removal of arsenic and antimony during blast furnace smelting of lead-containing materials. JOM 2017, 69, 381–387. [Google Scholar] [CrossRef]
- Zhong, D.P.; Li, L.; Tan, C. Separation of arsenic from the antimony-bearing dust through selective oxidation using CuO. Metall. Mater. Trans. B 2017, 48, 1308–1314. [Google Scholar] [CrossRef]
- Yang, W.C.; Tian, S.Q.; Wu, J.X.; Chai, L.Y.; Liao, Q. Distribution and behavior of arsenic during the reducing-matting smelting process. JOM 2017. [Google Scholar] [CrossRef]
- Yazawa, A.; Azakami, T. Thermodynamics of removing impurities during copper smelting. Can. Metall. Q. 1969, 8, 257–261. [Google Scholar] [CrossRef]
- Nakazawa, S.; Yazawa, A.; Jorgensen, F.R.A. Simulation of the removal of arsenic during the roasting of copper concentrate. Metall. Mater. Trans. B 1999, 30, 393–401. [Google Scholar] [CrossRef]
- Chen, C.L.; Zhang, L.; Jahanshahi, S. Thermodynamic modeling of arsenic in copper smelting process. Metall. Mater. Trans. B 2010, 41, 1175–1185. [Google Scholar] [CrossRef]
- Swinbourne, D.R.; Kho, T.S. Computational thermodynamics modeling of minor element distributions during copper flash converting. Metall. Mater. Trans. B 2012, 43, 823–829. [Google Scholar] [CrossRef]
- Coursol, P.; Mackey, P.J.; Kapusta, J.P.T.; Valencia, N.C. Energy consumption in copper smelting: A new Asian horse in the race. JOM 2015, 67, 1066–1074. [Google Scholar] [CrossRef]
- Li, W.F.; Zhan, J.; Fan, Y.Q.; Wei, C.; Zhang, C.F.; Hwang, J.Y. Research and industrial application of a process for direct reduction of molten high-lead smelting slag. JOM 2017, 69, 784–789. [Google Scholar] [CrossRef]
- Chen, L.; Hao, Z.D.; Yang, T.Z.; Liu, W.F.; Zhang, D.C.; Zhang, L.; Bin, S.; Bin, W.D. A comparison study of the oxygen-rich side blow furnace and the oxygen-rich bottom blow furnace for liquid high lead slag reduction. JOM 2015, 67, 1123–1129. [Google Scholar] [CrossRef]
- Liu, W.F.; Yang, T.Z.; Zhang, D.C.; Chen, L.; Liu, Y.F. A new pyrometallurgical process for producing antimony white from by-product of lead smelting. JOM 2014, 66, 1694–1700. [Google Scholar] [CrossRef]
- Qu, S.L.; Dong, Z.Q.; Chen, T. Distribution of minor elements in complex copper concentrates in oxygen-enriched bottom blown smelting process. China Nonferrous Metall. 2016, 3, 22–24. (In Chinese) [Google Scholar]
- Shui, L.; Cui, Z.X.; Ma, X.D.; Rhamdhani, M.A.; Nguyen, A.V.; Zhao, B.J. Mixing phenomena in a bottom blown copper smelter: A water model study. Metall. Mater. Trans. B 2015, 46, 1218–1225. [Google Scholar] [CrossRef]
- Shui, L.; Cui, Z.X.; Ma, X.D.; Rhamdhani, M.A.; Nguyen, A.V.; Zhao, B.J. Understanding of bath surface wave in bottom blown copper smelting furnace. Metall. Mater. Trans. B 2016, 47, 135–144. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Chen, Z.; Yan, H.J.; Liu, F.K.; Liu, L.; Cui, Z.X.; Shen, D.B. Numerical simulation of gas-liquid multi-phase flows in oxygen enriched bottom-blown furnace. Chin. J. Nonferrous Met. 2012, 22, 1826–1834. (In Chinese) [Google Scholar]
- Yan, H.J.; Liu, F.K.; Zhang, Z.Y.; Gao, Q.; Liu, L.; Cui, Z.X.; Shen, D.B. Influence of lance arrangement on bottom-blowing bath smelting process. Chin. J. Nonferrous Met. 2012, 22, 2393–2400. (In Chinese) [Google Scholar]
- Chen, C.L.; Jahanshahi, S. Thermodynamics of arsenic in FeOX-CaO-SiO2 slags. Metall. Mater. Trans. B 2010, 41, 1166–1174. [Google Scholar] [CrossRef]
- Liao, L.L.; Wang, Q.M.; Tian, Q.H.; Guo, X.Y. Multiphase equilibrium modeling study on the oxygen bottom blowing copper smelting (SKS) process. In Proceedings of the 9th International Copper Conference (Copper 2016), Kobe, Japan, 13–16 November 2016; pp. 1252–1264. [Google Scholar]
- HSC Chemistry, version 6.1. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Outokumpu: Pori, Finland, 2007.
- Li, X.F. The numerical analysis and optimization on process in copper flash furnace. Ph.D. Thesis, Central South University, Changsha, China, October 2001. (In Chinese). [Google Scholar]
- Li, J.B. Multifield Simulation of Copper Flash Smelting Process Based on Fluent Software. Master’s Thesis, JiangXi University of Science and Technology, Ganzhou, China, June 2001. (In Chinese). [Google Scholar]
- Wang, Q.M.; Guo, X.Y.; Tian, Q.H. Copper smelting mechanism in oxygen bottom-blown furnace. Trans. Nonferrous Met. Soc. China 2017, 27, 946–953. [Google Scholar] [CrossRef]
Compositions | Cu | Fe | S | Pb | Zn | As | Sb | Bi | SiO2 | MgO | CaO | Al2O3 | Others |
Content (wt %) | 24.4 | 26.8 | 28.6 | 0.96 | 1.9 | 0.37 | 0.10 | 0.10 | 6.4 | 1.9 | 2.4 | 2.3 | 3.9 |
Operation Parameters | SKS Plant Data |
---|---|
Charging speed of dry mixed concentrates (t/h) | 66 |
Water percent in the mixed concentrates (%) | 10.21 |
Charging speed of flux (t/h) | 5.277 |
Smelting temperature (K) | 1473 |
Negative pressure in furnace (Pa) | 50–200 |
Volume of pure oxygen (Nm3/h) | 10,885 |
Volume of air (Nm3/h) | 5651 |
Volume of O2 in oxygen-enriched air (%) | 73 |
Matte grade (%) | 70 |
Oxygen efficiency (%) | 99 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Guo, X.; Tian, Q.; Chen, M.; Zhao, B. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process. Metals 2017, 7, 302. https://doi.org/10.3390/met7080302
Wang Q, Guo X, Tian Q, Chen M, Zhao B. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process. Metals. 2017; 7(8):302. https://doi.org/10.3390/met7080302
Chicago/Turabian StyleWang, Qinmeng, Xueyi Guo, Qinghua Tian, Mao Chen, and Baojun Zhao. 2017. "Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process" Metals 7, no. 8: 302. https://doi.org/10.3390/met7080302
APA StyleWang, Q., Guo, X., Tian, Q., Chen, M., & Zhao, B. (2017). Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process. Metals, 7(8), 302. https://doi.org/10.3390/met7080302