Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Microstructural Characterization
2.4. Physical Properties
2.4.1. Density Measurement
2.4.2. Microhardness
2.4.3. Coefficient of Thermal Expansion (CTE)
2.4.4. Ignition Temperature
2.5. Mechanical Properties
2.5.1. Compression Testing and Fracture Behavior
2.5.2. Elastic Modulus and Damping Behavior
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Physical Properties
3.2.1. Density
3.2.2. Microhardness
3.2.3. Coefficient of Thermal Expansion (CTE)
3.2.4. Ignition Properties
3.3.Mechanical Properties
3.3.1. Compression Properties and Fracture Behavior
3.3.2. Elastic Modulus and Damping Characteristics
4. Biomechanical Properties
5. Conclusions
- The grain size reduced with the progressive incorporation of Sm2O3 NPs to pure Mg, with Mg-1.5 vol % Sm2O3 exhibiting a maximum of 46.7% reduction in grain size with respect to pure Mg.
- The hardness of pure Mg increased with the increasing amount of Sm2O3 with Mg-1.5 vol % Sm2O3 showing a maximum increase of ~37%.
- The CTE values reduced with the incorporation of Sm2O3 NPs in pure Mg with Mg-1.5 vol % Sm2O3 showing a reduction of ~8.22% and the ignition temperature of Mg-1.5 vol % Sm2O3 showed the highest resistance to ignition (enhancement by ~69 °C), indicating superior thermal and dimensional stability.
- The damping loss rate and damping capacity of pure Mg enhanced with the increasing amount of Sm2O3 NPs, with the Mg-1.5 vol % Sm2O3 nanocomposite displaying the best damping response (~4.5 times better than pure Mg).
- The best compressive strength was exhibited by the Mg-1.5 vol % Sm2O3 nanocomposite with 0.2 CYS and UCS values increasing by ~56% and 53% when compared to pure Mg. The ductility values of Mg-Sm2O3 composites were either better or similar to pure Mg.
- The superior compressive and damping properties with elastic modulus closer to natural bone makes Mg-Sm2O3 composites a potential choice as implant materials.
Author Contributions
Conflicts of Interest
References
- Gupta, M.; Sharon, N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Gupta, M.; Wong, W. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- Gupta, M.; Parande, G.; Manakari, V. An insight into high performance magnesium alloy/nano-metastable-syntactic composites. In Proceedings of the 17th Australian International Aerospace Congress: AIAC 2017, Melbourne, Australia, 26 February–2 March 2017; p. 270. [Google Scholar]
- Manakari, V.; Parande, G.; Gupta, M. Selective laser melting of magnesium and magnesium alloy powders: A review. Metals 2016, 7, 2. [Google Scholar] [CrossRef]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- Classen, H.; Nowitzki, S. The clinical importance of magnesium. 2. The indications for supplementation and therapy. Fortschr. Med. 1990, 108, 198–200. [Google Scholar] [PubMed]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Sietsema, W. Animal models of cortical porosity. Bone 1995, 17, S297–S305. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Gupta, M. Review on mechanical properties of magnesium (nano) composites developed using energy efficient microwaves. Powder Metall. 2015, 58, 183–192. [Google Scholar] [CrossRef]
- Ubaid, F.; Matli, P.R.; Shakoor, R.A.; Parande, G.; Manakari, V.; Mohamed, A.M.A.; Gupta, M. Using B4C nanoparticles to enhance thermal and mechanical response of aluminum. Materials 2017, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Barta, C.A.; Sachs-Barrable, K.; Jia, J.; Thompson, K.H.; Wasan, K.M.; Orvig, C. Lanthanide containing compounds for therapeutic care in bone resorption disorders. Dalton Trans. 2007, 5019–5030. [Google Scholar] [CrossRef] [PubMed]
- Bayani, H.; Saebnoori, E. Effect of rare earth elements addition on thermal fatigue behaviors of AZ91 magnesium alloy. J. Rare Earths 2009, 27, 255–258. [Google Scholar] [CrossRef]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef]
- Kang, Y.-B.; Jin, L.; Chartrand, P.; Gheribi, A.E.; Bai, K.; Wu, P. Thermodynamic evaluations and optimizations of binary mg-light rare earth (La, Ce, Pr, Nd, Sm) systems. Calphad 2012, 38, 100–116. [Google Scholar] [CrossRef]
- Tekumalla, S.; Gupta, M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Mater. Des. 2017, 113, 84–98. [Google Scholar] [CrossRef]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.; Staiger, M.P.; Dias, G.J. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef] [PubMed]
- Cockeram, B. The fracture toughness and toughening mechanism of commercially available unalloyed molybdenum and oxide dispersion strengthened molybdenum with an equiaxed, large grain structure. Metall. Mater. Trans. A 2009, 40, 2843–2860. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.; Jiang, F.; Ding, X.; Sun, Y.; Sun, J.; Ma, E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 2013, 12, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, N.T. Magnesium biomaterials: Past, present and future. Corros. Eng. Sci. Technol. 2012, 47, 322–328. [Google Scholar] [CrossRef]
- Navrotsky, A.; Lee, W.; Mielewczyk-Gryn, A.; Ushakov, S.V.; Anderko, A.; Wu, H.; Riman, R.E. Thermodynamics of solid phases containing rare earth oxides. J. Chem. Thermodyn. 2015, 88, 126–141. [Google Scholar] [CrossRef]
- Martienssen, W.; Warlimont, H. Springer handbook of condensed matter and materials data. Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Muneer, I.; Farrukh, M.A.; Javaid, S.; Shahid, M.; Khaleeq-ur-Rahman, M. Synthesis of Gd2O3/Sm2O3 nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattices Microstruct. 2015, 77, 256–266. [Google Scholar] [CrossRef]
- Herath, H.; Di Silvio, L.; Evans, J. In vitro evaluation of samarium (III) oxide as a bone substituting material. J. Biomed. Mater. Res. Part A 2010, 94, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Marker, T. Development of a Laboratory-Scale Flammability Test for Magnesium Alloys Used in Aircraft Seat Construction; Federal Aviation Administration William J. Hughes Technical Center: Egg Harbor Township, NJ, USA, 2014.
- Parande, G.; Manakari, V.; Meenashisundaram, G.K.; Gupta, M. Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates. J. Mater. Res. 2017, 32, 1–10. [Google Scholar] [CrossRef]
- Reddy, M.P.; Ubaid, F.; Shakoor, R.; Parande, G.; Manakari, V.; Mohamed, A.; Gupta, M. Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Mater. Sci. Eng. A 2017, 696, 60–69. [Google Scholar] [CrossRef]
- Fida Hassan, S.; Al-Aqeeli, N.; Gasem, Z.; Tun, K.; Gupta, M. Magnesium nanocomposite: Increasing copperisation effect on high temperature tensile properties. Powder Metall. 2016, 59, 66–72. [Google Scholar] [CrossRef]
- Vaidya, R.U.; Chawla, K. Thermal expansion of metal-matrix composites. Compos. Sci. Technol. 1994, 50, 13–22. [Google Scholar] [CrossRef]
- Czerwinski, F. Overcoming barriers of magnesium ignition and flammability. Adv. Mater. Process. 2014, 172, 28–31. [Google Scholar]
- Schwartz, M. Encyclopedia and Handbook of Materials, Parts and Finishes; Crc Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Phillips, W. Oxidation of several lanthanide elements. J. Less Common Met. 1964, 7, 139–143. [Google Scholar] [CrossRef]
- Nguyen, Q.; Gupta, M. Microstructure and mechanical characteristics of AZ31B/Al2O3 nanocomposite with addition of Ca. J. Compos. Mater. 2009, 43, 5–17. [Google Scholar] [CrossRef]
- Manakari, V.; Parande, G.; Doddamani, M.; Gupta, M. Enhancing the ignition, hardness and compressive response of magnesium by reinforcing with hollow glass microballoons. Materials 2017, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Parande, G.; Manakari, V.; Meenashisundaram, G.K.; Gupta, M. Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int. J. Mater. Res. 2016, 107, 1091–1099. [Google Scholar] [CrossRef]
- Nguyen, Q.; Gupta, M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos. Sci. Technol. 2008, 68, 2185–2192. [Google Scholar] [CrossRef]
- Hassan, S.; Gupta, M. Development of high strength magnesium copper based hybrid composites with enhanced tensile properties. Mater. Sci. Technol. 2003, 19, 253–259. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, L.; Zheng, B.; Schoenung, J.; Mahajan, S.; Lavernia, E.; Beyerlein, I. Deformation twinning (update). Ref. Modul. Mater. Sci. Eng. 2015, 1–24. Available online: https://doi.org/10.1016/B978-0-12-803581-8.02878-2 (accessed on 31 October 2016).
- Zhang, D.; Wen, H.; Kumar, M.A.; Chen, F.; Zhang, L.; Beyerlein, I.J.; Schoenung, J.M.; Mahajan, S.; Lavernia, E.J. Yield symmetry and reduced strength differential in Mg-2.5 Y alloy. Acta Mater. 2016, 120, 75–85. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408. [Google Scholar] [CrossRef]
- Chen, Y.; Tekumalla, S.; Guo, Y.; Gupta, M. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Meenashisundaram, G.K.; Manakari, V.; Parande, G.; Gupta, M. Lanthanum effect on improving cte, damping, hardness and tensile response of Mg-3Al alloy. J. Alloy. Compd. 2017, 695, 3612–3620. [Google Scholar] [CrossRef]
- Stecura, S.; Campbell, W.J. Thermal Expansion and Phase Inversion of Rare-Earth Oxides; US Dept. of the Interior, Bureau of Mines: Washington, DC, USA, 1961; Volume 5847.
- Carreno-Morelli, E.; Urreta, S.; Schaller, R. Mechanical spectroscopy of thermal stress relaxation at metal–ceramic interfaces in aluminium-based composites. Acta Mater. 2000, 48, 4725–4733. [Google Scholar] [CrossRef]
- Yi, H.-K.; Liu, Z.-T.; Li, F.-H. Investigation on room temperature damping vs strain amplitude behaviors of hypereutectic Al-17Si-xLa alloys. J. Funct. Mater. 2003, 34, 525–527. [Google Scholar]
- Anilchandra, A.; Surappa, M. Microstructure and damping behaviour of consolidated magnesium chips. Mater. Sci. Eng. A 2012, 542, 94–103. [Google Scholar] [CrossRef]
- Srikanth, N.; Zhong, X.; Gupta, M. Enhancing damping of pure magnesium using nano-size alumina particulates. Mater. Lett. 2005, 59, 3851–3855. [Google Scholar] [CrossRef]
- Xiuqing, Z.; Haowei, W.; Lihua, L.; Naiheng, M. In situ synthesis method and damping characterization of magnesium matrix composites. Compos. Sci. Technol. 2007, 67, 720–727. [Google Scholar] [CrossRef]
- Chung, D. Review: Materials for vibration damping. J. Mater. Sci. 2001, 36, 5733–5737. [Google Scholar] [CrossRef]
- Zhang, J.; Gungor, M.; Lavernia, E. The effect of porosity on the microstructural damping response of 6061 aluminium alloy. J. Mater. Sci. 1993, 28, 1515–1524. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chen, M.-S.; Lin, L.-H.; Lin, M.-H.; Wu, C.-Z.; Ou, K.-L.; Yu, C.-H. Effect of heat treatment on the microstructures and damping properties of biomedical Mg–Zr alloy. J. Alloy. Compd. 2011, 509, 813–819. [Google Scholar] [CrossRef]
- Mallick, K. Bone Substitute Biomaterials; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Xu, T.; Zhang, N.; Nichols, H.L.; Shi, D.; Wen, X. Modification of nanostructured materials for biomedical applications. Mater. Sci. Eng. C 2007, 27, 579–594. [Google Scholar] [CrossRef]
- Cho, K.; Niinomi, M.; Nakai, M.; Liu, H.; Santos, P.F.; Itoh, Y.; Ikeda, M. Tensile and Compressive Properties of Low-Cost High-Strength β-Type Ti-Mn Alloys Fabricated by Metal Injection Molding; Wiley Online Library: San Diego, CA, USA, 2015; pp. 499–503. [Google Scholar]
- Henry, D. Materials and Coatings for Medical Devices: Cardiovascular; ASM International: Geauga County, OH, USA, 2009; pp. 151–186. [Google Scholar]
- Handbook, M. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Geauga County, OH, USA, 1990; Volume 2, p. 102. [Google Scholar]
- Puleo, D.A.; Huh, W.W. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J. Appl. Biomater. 1995, 6, 109–116. [Google Scholar] [CrossRef] [PubMed]
Material | Grain Size (µm) | Aspect Ratio | Hardness (Hv) | CTE (×10−6/K) |
---|---|---|---|---|
Pure Mg | 25.7 ± 2.6 | 1.39 ± 0.41 | 54 ± 2 | 26.27 |
Mg-0.5 Sm2O3 | 21.4 ± 2.3 (↓16.73%) | 1.36 ± 0.20 | 64 ± 3 (↑18.52%) | 25.82 (↓1.71%) |
Mg-1.0 Sm2O3 | 17.6 ± 1.8 (↓31.51%) | 1.33 ± 0.16 | 71 ± 2 (↑31.48%) | 24.99 (↓4.87%) |
Mg-1.5 Sm2O3 | 12.9 ± 2.2 (↓49.80%) | 1.52 ± 0.30 | 73 ± 1 (↑35.18%) | 24.11 (↓8.22%) |
Material | Theoretical Density (g/cc) | Experimental Density (g/cc) | Porosity (%) |
---|---|---|---|
Pure Mg | 1.74 | 1.7265 ± 0.0142 | 0.78 |
Mg-0.5 Sm2O3 | 1.773 | 1.7287 ± 0.0147 | 2.50 |
Mg-1.0 Sm2O3 | 1.806 | 1.7531 ± 0.0047 | 2.92 |
Mg-1.5 Sm2O3 | 1.839 | 1.7838 ± 0.0085 | 3.00 |
Material | Ignition Temperature (°C) | Thermal Conductivity (W/m·K) |
---|---|---|
Pure Mg | 581 | 135 |
Mg-0.5 Sm2O3 | 610 | 134.32 |
Mg-1.0 Sm2O3 | 613 | 133.65 |
Mg-1.5 Sm2O3 | 650 | 132.97 |
AZ31 | 628 | - |
AZ61 | 559 | |
AZ63 | 573 | |
AZ91 | 600 | |
AM50 | 585 | |
AM60 | 525 | |
ZK40A | 500 | |
ZK51A | 552 | |
ZK60A | 499 |
Material | 0.2 CYS (MPa) | UCS (MPa) | Fracture Strain (%) | Energy Absorbed (MJ/m3) |
---|---|---|---|---|
Pure Mg | 74 ± 3 | 249 ± 6 | 17.4 ± 0.3 | 26.8 ± 0.7 |
Mg-0.5 Sm2O3 | 87 ± 1 (↑17.56%) | 285 ± 6 (↑14.45%) | 19.8 ± 0.6 (↑13.79%) | 33.0 ± 1.3 (↑23.13%) |
Mg-1.0 Sm2O3 | 118 ± 2 (↑59.45%) | 331 ± 7 (↑32.93%) | 20.1 ± 0.7 (↑15.51%) | 42.9 ± 2.9 (↑60.07%) |
Mg-1.5 Sm2O3 | 128 ± 5 (↑72.97%) | 395 ± 7 (↑58.63%) | 17.2 ± 0.5 (↓1.14%) | 41.2 ± 2.4 (↑53.73%) |
Material | Damping Loss Rate | Damping Capacity | Elastic Modulus (GPa) |
---|---|---|---|
Pure Mg | 8.2 ± 0.2 | 0.000394 ± 0.000021 | 42.3 ± 0.14 |
Mg-0.5 Sm2O3 | 20.2 ± 0.4 (* 2.46) | 0.000719 ± 0.000017 (↑82.48%) | 43.7 ± 0.1 (↑3.30%) |
Mg-1 Sm2O3 | 29.35 ± 1.2 (* 3.57) | 0.001049 ± 0.00058 (↑166.24%) | 45.4 ± 0.08 (↑7.32%) |
Mg-1.5 Sm2O3 | 36.65 ± 0.9 (* 4.47) | 0.0011395 ± 0.0008 (↑189.21%) | 44.9 ± 0.2 (↑6.14%) |
Material | Density (g/cc) | 0.2% CYS (MPa) | UCS (MPa) | Fracture Strain (%) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
Natural Bone | 1.8–2.1 a | 130–180 a | - | - | 3–20 a |
Cortical Bone | - | - | 131–224 b | 2–12 b | 15–30 b |
Ti-6Al-4V alloy | 4.43 c | 970 c | - | - | 113.8 c |
316L Stainless Steel | 8.0 d | 170–310 a | - | - | 193 d |
Co-Cr alloy | 9.12–9.24 e | - | 283–313 e | - | 222–240 e |
Pure Mg | 1.7265 | 74 | 249 | 17.4 | 42.3 |
Mg-0.5 Sm2O3 | 1.7287 | 87 | 285 | 19.8 | 43.7 |
Mg-1 Sm2O3 | 1.7531 | 118 | 331 | 20.1 | 45.4 |
Mg-1.5 Sm2O3 | 1.7838 | 128 | 395 | 17.2 | 44.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujur, M.S.; Mallick, A.; Manakari, V.; Parande, G.; Tun, K.S.; Gupta, M. Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles. Metals 2017, 7, 357. https://doi.org/10.3390/met7090357
Kujur MS, Mallick A, Manakari V, Parande G, Tun KS, Gupta M. Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles. Metals. 2017; 7(9):357. https://doi.org/10.3390/met7090357
Chicago/Turabian StyleKujur, Milli Suchita, Ashis Mallick, Vyasaraj Manakari, Gururaj Parande, Khin Sandar Tun, and Manoj Gupta. 2017. "Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles" Metals 7, no. 9: 357. https://doi.org/10.3390/met7090357
APA StyleKujur, M. S., Mallick, A., Manakari, V., Parande, G., Tun, K. S., & Gupta, M. (2017). Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles. Metals, 7(9), 357. https://doi.org/10.3390/met7090357