Impact of Warm Rolling Process Parameters on Crystallographic Textures, Microstructure and Mechanical Properties of Low-Carbon Boron-Bearing Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Texture
3.3. Tensile Properties
4. Discussion
4.1. Microstructure and Crystallographic Texture
4.2. Tensile Properties
5. Conclusions
- (1)
- The fine boron nitride precipitates, by their pinning effect, improve the strength properties of the steel deformed at lower rolling temperatures.
- (2)
- High dislocation densities, forming smaller cell structures in specimens deformed at rolling temperatures of 790 °C and 830 °C, enhance the strength properties.
- (3)
- The use of boron-added steel is beneficial when the stoichiometric ratio of boron with nitrogen is equal to 0.7. This condition provides the best opportunity for the complete elimination of the fluting effect and the yield point elongation when warm rolling is applied.
- (4)
- Asymmetric rolling through the creation of the simple shear only affects the size of the grains via formation of refined grains at all rolling temperatures.
- (5)
- The deformation modes influence the boundary characters. The simple shear due to the creation of the velocity gradient causes the formation of larger numbers of high angle grain boundaries.
- (6)
- Asymmetric and symmetric rolling have the same effect on the trend of mechanical properties at all rolling temperatures.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, J.Z.; De, A.K.; De Cooman, B.C. Formation of the Cottrell Atmosphere during Strain Aging of Bake-Hardenable Steels. Metall. Mater. Trans. A 2001, 32, 417–423. [Google Scholar] [CrossRef]
- Baker, L.J.; Daniel, S.R.; Parker, J.D. Metallurgy and Processing of Ultralow Carbon Bake Hardening Steels. Mater. Sci. Technol. 2002, 18, 355–368. [Google Scholar] [CrossRef]
- Zhao, J.Z.; De, A.K.; Cooman, B.D. A Model for the Cottrell Atmosphere Formation during Aging of Ultra Low Carbon Bake Hardening Steels. ISIJ Int. 2000, 40, 725–730. [Google Scholar] [CrossRef]
- Baker, L.J.; Parker, J.D.; Daniel, S.R. Mechanism of Bake Hardening in Ultralow Carbon Steel Containing Niobium and Titanium Additions. Mater. Sci. Technol. 2002, 18, 541–547. [Google Scholar] [CrossRef]
- Gündüz, S.; Cochrane, R.C. Effect of Dynamic Strain Aging on Mechanical Properties of Vanadium Microalloyed Steel. Mater. Sci. Technol. 2003, 19, 422–428. [Google Scholar] [CrossRef]
- Karabulut, H.; Gündüz, S. Effect of vanadium content on dynamic strain ageing in microalloyed medium carbon steel. Mater. Des. 2004, 25, 521–527. [Google Scholar] [CrossRef]
- Gündüz, S. Dynamic Strain Aging Effects in Niobium Microalloyed Steel. Ironmak. Steelmak. 2002, 29, 341–346. [Google Scholar] [CrossRef]
- Haq, M.I.; Ikram, N. The Effect of Boron Addition on the Tensile Properties of Control-Rolled and Normalized C-Mn Steels. J. Mater. Sci. 1993, 28, 5981–5985. [Google Scholar] [CrossRef]
- de Souza, T.O.; Buono, V.T.L. Optimization of the Strain Aging Resistance in Aluminum Killed Steels Produced by Continuous Annealing. Mater. Sci. Eng. A 2003, 354, 212–216. [Google Scholar] [CrossRef]
- Funakawa, Y.; Inazumi, T.; Hosoya, Y. Effect of Morphological Change of Carbide on Elongation of Boron-Bearing Al-Killed Steel Sheets. ISIJ Int. 2001, 41, 900–907. [Google Scholar] [CrossRef]
- Pitakkorraras, S.; Hirunlabh, C.; Umeda, T. Microstructure observation and mechanical properties of hot rolled low carbon steel strip with boron addition. Proceedings of METAL 2011, Brno, Czech Republic, 18–20 May 2011. [Google Scholar]
- Nuntawat, C.; Umeda, T. Development in Production of High Formability Boron Added Low Carbon Steel. Proceedings of METAL 2013, Brno, Czech Republic, 15–17 May 2013. [Google Scholar]
- Deva, A.; De, S.K.; Jha, B.K. Effect of B/N Ratio on Plastic Anisotropy Behaviour in Low Carbon Aluminium Killed Steel. Mater. Sci. Technol. 2008, 24, 124–126. [Google Scholar] [CrossRef]
- Deva, A.; De, S.K.; Jha, B.K. Strain Hardening Behavior and Cold Reducibility of Boron-Added Low-Carbon Steel. J. Mater. Eng. Perform. 2009, 18, 109–110. [Google Scholar] [CrossRef]
- Deva, A.; Jha, B.K.; Mishra, N.S. Influence of Boron on Strain Hardening Behaviour and Ductility of Low Carbon Hot Rolled Steel. Mater. Sci. Eng. A 2011, 528, 7375–7380. [Google Scholar] [CrossRef]
- Bakkaloğlu, A. Effect of Processing Parameters on the Microstructure and Properties of an Nb Microalloyed Steel. Mater. Lett. 2002, 56, 200–209. [Google Scholar] [CrossRef]
- Song, R.; Ponge, D.; Raabe, D.; Speer, J.G.; Matlock, D.K. Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels. Mater. Sci. Eng. A 2006, 441, 1–17. [Google Scholar] [CrossRef]
- Panigrahi, B.K. Processing of Low Carbon Steel Plate and Hot Strip—An Overview. Bull. Mater. Sci. 2001, 24, 361–371. [Google Scholar] [CrossRef]
- Hamad, K.; Ko, Y.G. Effect of Roll Speed Ratio on Microstructure Evolution and Mechanical Properties of 0.18 wt% Carbon Steel Deformed by Differential Speed Rolling. Mater. Lett. 2015, 160, 213–217. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, J.; Shan, A. Microstructures and Mechanical Properties of Commercial Purity Iron Processed by Asymmetric Rolling. Mater. Sci. Eng. A 2009, 509, 76–80. [Google Scholar] [CrossRef]
- Cai, M.H.; Dhinwal, S.S.; Han, Q.H.; Chao, Q.; Hodgson, P.D. Gradient Ultrafine Ferrite and Martensite Structure and Its Tensile Properties by Asymmetric Rolling in Low Carbon Microalloyed Steel. Mater. Sci. Eng. A 2013, 583, 205–209. [Google Scholar] [CrossRef]
- Chen, S.; An, Y.G.; Lahaije, C. Toughness Improvement in Hot Rolled HSLA Steel Plates through Asymmetric Rolling. Mater. Sci. Eng. A 2015, 625, 374–379. [Google Scholar] [CrossRef]
- Lee, K.-M.; Lee, H.-C. Grain Refinement and Mechanical Properties of Asymmetrically Rolled Low Carbon Steel. J. Mater. Process. Technol. 2010, 210, 1574–1579. [Google Scholar] [CrossRef]
- Orlov, D.; Pougis, A.; Lapovok, R.; Toth, L.S.; Timokhina, I.B.; Hodgson, P.D.; Haldar, A.; Bhattacharjee, D. Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures. Metall. Mater. Trans. A 2013, 44, 4346–4359. [Google Scholar] [CrossRef]
- Hundy, B.B. Elimination of stretcher strains in mild-steel pressings. J. Iron Steel Inst. 1954, 178, 127–138. [Google Scholar]
- Jj, J.; Mp, B.-G.; Savoie, J. Transformation Textures in Steels. ISIJ Int. 1994, 34, 927–942. [Google Scholar]
- Randle, V.; Engler, O. Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping; CRC Press: London, UK, 2014. [Google Scholar]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Wang, G. Effects of Hot Rolled Shear Bands on Formability and Surface Ridging of an Ultra Purified 21% Cr Ferritic Stainless Steel. J. Mater. Process. Technol. 2011, 211, 1051–1059. [Google Scholar] [CrossRef]
- McQueen, H.J. The Production and Utility of Recovered Dislocation Substructures. Metall. Trans. A 1977, 8, 807–824. [Google Scholar] [CrossRef]
- Bengochea, R.; Lopez, B.; Gutierrez, I. Microstructural Evolution during the Austenite-to-Ferrite Transformation from Deformed Austenite. Metall. Mater. Trans. A 1998, 29, 417–426. [Google Scholar] [CrossRef]
- Pa, M.; Ferry, M.; Chandra, T. Five Decades of the Zener Equation. ISIJ Int. 1998, 38, 913–924. [Google Scholar]
- El-Kashif, E.; Asakura, K.; Koseki, T.; Shibata, K. Effects of Boron, Niobium and Titanium on Grain Growth in Ultra High Purity 18% Cr Ferritic Stainless Steel. ISIJ Int. 2004, 44, 1568–1575. [Google Scholar] [CrossRef] [Green Version]
- Samet-Meziou, A.; Etter, A.L.; Baudin, T.; Penelle, R. TEM Study of Recovery and Recrystallization Mechanisms after 40% Cold Rolling in an IF-Ti Steel. Scr. Mater. 2005, 53, 1001–1006. [Google Scholar] [CrossRef]
- Segal, V. Review: Modes and processes of severe plastic deformation (SPD). Materials 2018, 11, 1175. [Google Scholar] [CrossRef] [PubMed]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Beygelzimer, Y. Vortices and mixing in metals during severe plastic deformation. Mater. Sci. Forum 2011, 683, 213–224. [Google Scholar] [CrossRef]
- Kulagin, R.; Beygelzimer, Y.; Ivanisenko, Yu.; Mazilkin, A.; Straumal, B.; Hahn, H. Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater. Lett. 2018, 222, 172–175. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation Hardening in Metals. J. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y. Taylor-Based Nonlocal Theory of Plasticity. Int. J. Solids Struct. 2001, 38, 2615–2637. [Google Scholar] [CrossRef]
- Chown, L.H.; Cornish, L.A. Investigation of Hot Ductility in Al-Killed Boron Steels. Mater. Sci. Eng. A 2008, 494, 263–275. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Cu | Al | Nb | V | Ti | B | N |
---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.3 | 0.03 | 0.02 | 0.02 | 0.04 | 0.05 | 0.005 | 0.005 | 0.000 | 0.0035 | 0.005 |
Rolling Speed Ratio (rpm) | Ferrite Grain Size (µm) (790 °C) | Ferrite Grain Size (µm) (830 °C) | Ferrite Grain Size (µm) (870 °C) |
---|---|---|---|
1 | 31.8 ± 2.3 | 37.8 ± 3.5 | 15.9 ± 0.9 |
1.5 | 26.7 ± 4.3 | 31.8 ± 2.9 | 11.2 ± 0.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zebarjadi Sar, M.; Barella, S.; Gruttadauria, A.; Mombelli, D.; Mapelli, C. Impact of Warm Rolling Process Parameters on Crystallographic Textures, Microstructure and Mechanical Properties of Low-Carbon Boron-Bearing Steels. Metals 2018, 8, 927. https://doi.org/10.3390/met8110927
Zebarjadi Sar M, Barella S, Gruttadauria A, Mombelli D, Mapelli C. Impact of Warm Rolling Process Parameters on Crystallographic Textures, Microstructure and Mechanical Properties of Low-Carbon Boron-Bearing Steels. Metals. 2018; 8(11):927. https://doi.org/10.3390/met8110927
Chicago/Turabian StyleZebarjadi Sar, Mandana, Silvia Barella, Andrea Gruttadauria, Davide Mombelli, and Carlo Mapelli. 2018. "Impact of Warm Rolling Process Parameters on Crystallographic Textures, Microstructure and Mechanical Properties of Low-Carbon Boron-Bearing Steels" Metals 8, no. 11: 927. https://doi.org/10.3390/met8110927
APA StyleZebarjadi Sar, M., Barella, S., Gruttadauria, A., Mombelli, D., & Mapelli, C. (2018). Impact of Warm Rolling Process Parameters on Crystallographic Textures, Microstructure and Mechanical Properties of Low-Carbon Boron-Bearing Steels. Metals, 8(11), 927. https://doi.org/10.3390/met8110927