Investigation of Stress-Oriented Hydrogen-Induced Cracking (SOHIC) in an Amine Absorber Column of an Oil Refinery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operating Conditions and Material of Construction
2.2. Sampling Positions
2.3. Experimental Procedures
3. Results
3.1. Material Characterization
3.2. Metallographic Characterization of SOHIC
3.3. Fractographic Analysis of Opened SOHIC Crack
4. Discussion: Implications for H2S/Amine Service
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- American Petroleum Institute. API RP 571, Damage Mechanisms Affecting Fixed Equipment in the Refining and Petrochemical Industries, 2nd ed.; American Petroleum Institute: Washington, DC, USA, 2011. [Google Scholar]
- American Petroleum Institute. API RP 579, Fittness-for-Service; American Petroleum Institute: Washington, DC, USA, 2007. [Google Scholar]
- Buchheim, G.M.; Osage, D.A.; Staats, J.C. Development of fitness-for-service rules for the assessment of hic and SOHIC damage in API 579-1/ASME FFS-1. In Proceedings of the ASME 2008 Pressure Vessels and Piping Conference, Chicago, IL, USA, 27–31 July 2008; pp. 761–775. [Google Scholar]
- Pargeter, R.J. Susceptibility to SOHIC for linepipe and pressure vessel steels—review of current knowledge. In Proceedings of the International Corrosion Conference, Nashville, TN, USA, 11–15 March 2007. [Google Scholar]
- McHenry, H.I.; Shives, T.R.; Read, D.T.; McColskey, J.D.; Brady, C.H.; Purtscher, P.T. Examination of a Pressure Vessel that Ruptured at the Chicago Refinery of the Union Oil Company on July 23 1984; Occupational Safety & Health Administration, US Department of Labor: Washington, DC, USA, 1986.
- Occupational Safety and Health Administration (OSHA). Potentially Hazardous Amine Absorber Pressure Vessels Used in Refinery Processing, Memorandum to OSHA Regional Administrators; US Department of Labor: Washington, DC, USA, 1986. Available online: https://www.osha.gov/laws-regs/standardinterpretations/1986-04-11 (accessed on 28 October 2017).
- Al-Anezi, M.A.; Rao, S. Failures by SOHIC in sour hydrocarbon service. J. Fail. Analysis Prev. 2011, 11, 363–371. [Google Scholar] [CrossRef]
- Kobayashi, K.; Dent, P.; Fowler, C.M. Effects of stress conditions and microstructure on SOHIC susceptibility. In Proceedings of the International Corrosion Conference, San Antonio, TX, USA, 9–13 March 2014. [Google Scholar]
- Koh, S.U.; Jung, H.G.; Kang, K.B.; Park, G.T.; Kim, K.Y. Effect of microstructure on hydrogen-induced cracking of linepipe steels. Corrosion 2008, 64, 574–585. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Naruoka, Y.; Tokunaga, Y. Effects of heat treatment conditions on SOHIC in normalized steel plates for pressure vessel use. J. High Press. Inst. Jpn. 1996, 34, 9–15. [Google Scholar] [CrossRef]
- Findley, K.O.; O’Brien, M.K.; Nako, H. Critical assessment 17: Mechanisms of hydrogen induced cracking in pipeline steels. Mater. Sci. Technol. 2015, 31, 1673–1680. [Google Scholar] [CrossRef]
- Gan, L.; Huang, F.; Zhao, X.; Liu, J.; Cheng, Y.F. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments. Int. J. Hydrogen Energy 2018, 43, 2293–2306. [Google Scholar] [CrossRef]
- Fujishiro, M.T.; Hara, D.T. In-situ observation of hydrogen induced cracking propagation behavior. Corrosion 2018. Available online: http://corrosionjournal.org/doi/abs/10.5006/2757 (accessed on 16 June 2018). [CrossRef]
- Okonkwo, P.; Shakoor, R.; Benamor, A.; Amer Mohamed, A.; Al-Marri, M. Corrosion behavior of API X100 steel material in a hydrogen sulfide environment. Metals 2017, 7, 109. [Google Scholar] [CrossRef]
- Ghosh, G.; Rostron, P.; Garg, R.; Panday, A. Hydrogen induced cracking of pipeline and pressure vessel steels: A review. Eng. Fract. Mech. 2018, 199, 609–618. [Google Scholar] [CrossRef]
- NACE International. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking; NACE International: Houston, TX, USA, 2003. [Google Scholar]
- Gingell, A.; Garat, X. Observations of damage modes as a function of microstructure during NACE TM-01-77/96 tensile testing of API 5L grade X60 linepipe steels. In Proceedings of the International Corrosion Conference, San Antonio, TX, USA, 25–30 April 1999. [Google Scholar]
- Crolet, J.L.; Adam, C. SOHIC without H2S. Mater. Perform. 2000, 39, 86–90. [Google Scholar]
- Ohki, T.; Tanimura, M.; Kinoshita, K.; Tenmyo, G. Effect of inclusions on sulphide stress cracking. In Proceedings of the Symposium on Stress Corrosion—New Approaches, Montreal, QC, Canada, 22–27 June 1975; pp. 399–419. [Google Scholar]
- Bruckhoff, W.; Geier, O.; Hofbauer, K.; Schmitt, G.; Steinmetz, D. Rupture of a sour gas line due to stress orientated hydrogen induced cracking-Failure analyses, experimental results and corrosion prevention. In Proceedings of the NACE CORROSION/85 Conference, Boston, MA, USA, 25–29 March 1985; p. 389. [Google Scholar]
- Azevedo, C.R.F. Failure analysis of a crude oil pipeline. Eng. Fail. Anal. 2007, 14, 978–994. [Google Scholar] [CrossRef]
- Miyoshi, E.; Tanaka, T.; Terasaki, F.; Ikeda, A. Hydrogen-induced cracking of steels under wet hydrogen-sulfide environment. J. Eng. Ind. 1976, 98, 1221–1230. [Google Scholar] [CrossRef]
- Robertson, I.M.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. Hydrogen embrittlement understood. Metall. Mater. Trans. B 2015, 46, 1085–1103. [Google Scholar] [CrossRef]
- Toribio, J.; Kharin, V.; Vergara, D.; Lorenzo, M. Hydrogen diffusion in metals assisted by stress: 2D numerical modelling and analysis of directionality. Solid State Phenom. 2015, 225, 33–38. [Google Scholar] [CrossRef]
- Mirza, M.S.; Barton, D.C.; Church, P. The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals. J. Mater. Sci. 1996, 31, 453–461. [Google Scholar] [CrossRef]
- Børvik, T.; Hopperstad, O.S.; Berstad, T. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part ii. Numerical study. Eur. J. Mech. 2003, 22, 15–32. [Google Scholar] [CrossRef]
- Ossai, C.I.; Boswell, B.; Davies, I.J. Pipeline failures in corrosive environments—A conceptual analysis of trends and effects. Eng. Fail. Anal. 2015, 53, 36–58. [Google Scholar] [CrossRef]
- Cayard, M.S.; Kane, R.D.; Cooke, D.L. An exploratory examination of the effect of sohic damage on the fracture resistance of carbon steels. In Proceedings of the International Corrosion Conference, New Orleans, LA, USA, 9–14 March 1997. [Google Scholar]
Location (mm from ID) | Yield Strength (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
15 | 290 | 432 | 46.4/45.06 |
30 | 287 | 430 | 42.26/37.2 |
50 | 291 | 439 | 38.0/39.4 |
70 | 286 | 438 | 40.4/38.5 |
Manufacturer Data | 283–285 | 445–452 | 38–39 |
Notch Position (mm from ID) | Specimen ID | CVN Energy (J) | CVN Average (J) |
---|---|---|---|
15 | A1/A5 | 186/194 | 190 |
30 | A2/A6 | 184/180 | 182 |
50 | A3/A7 | 170/186 | 178 |
70 | A4/A8 | 168/168 | 168 |
Notch Position (mm from ID) | Specimen ID | CVN Energy (J) | CVN Average (J) |
---|---|---|---|
15 | B1/B5 | 186/178 | 182 |
30 | B2/B6 | 216/188 | 202 |
50 | B3/B7 | 190/192 | 191 |
70 | B4/B8 | 184/182 | 181 |
Notch Position (mm from ID) | Specimen ID | CVN Energy (J) | CVN Average (J) |
---|---|---|---|
27.5 | C3/C6 | 170/186 | 178 |
36 | C2/C5 | 154/160 | 156 |
63.5 | C1/C4 | 186/190 | 188 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haidemenopoulos, G.N.; Kamoutsi, H.; Polychronopoulou, K.; Papageorgiou, P.; Altanis, I.; Dimitriadis, P.; Stiakakis, M. Investigation of Stress-Oriented Hydrogen-Induced Cracking (SOHIC) in an Amine Absorber Column of an Oil Refinery. Metals 2018, 8, 663. https://doi.org/10.3390/met8090663
Haidemenopoulos GN, Kamoutsi H, Polychronopoulou K, Papageorgiou P, Altanis I, Dimitriadis P, Stiakakis M. Investigation of Stress-Oriented Hydrogen-Induced Cracking (SOHIC) in an Amine Absorber Column of an Oil Refinery. Metals. 2018; 8(9):663. https://doi.org/10.3390/met8090663
Chicago/Turabian StyleHaidemenopoulos, Gregory N., Helen Kamoutsi, Kyriaki Polychronopoulou, Panagiotis Papageorgiou, Ioannis Altanis, Panagiotis Dimitriadis, and Michael Stiakakis. 2018. "Investigation of Stress-Oriented Hydrogen-Induced Cracking (SOHIC) in an Amine Absorber Column of an Oil Refinery" Metals 8, no. 9: 663. https://doi.org/10.3390/met8090663
APA StyleHaidemenopoulos, G. N., Kamoutsi, H., Polychronopoulou, K., Papageorgiou, P., Altanis, I., Dimitriadis, P., & Stiakakis, M. (2018). Investigation of Stress-Oriented Hydrogen-Induced Cracking (SOHIC) in an Amine Absorber Column of an Oil Refinery. Metals, 8(9), 663. https://doi.org/10.3390/met8090663