Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites
Abstract
:1. Introduction
2. Heterovalent Substitution
3. Structure
4. Optical
5. Stability
5.1. Influence of Light and Moisture on Stability
5.2. Influence of Temperature on Stability
6. Current Progress of Halide Double Perovskites
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ameen, S.; Rub, M.A.; Kosa, S.A.; Alamry, K.A.; Akhtar, M.S.; Shin, H.S.; Seo, H.K.; Asiri, A.M.; Nazeeruddin, M.K. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. ChemSusChem 2016, 9, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Hicks, W. Solar Cell Efficiency Explanatory Notes. Available online: https://www.nrel.gov/news/features/2018/nrel-research-pushes-perovskites-closer-to-market.html (accessed on 18 May 2018).
- Demic, S.; Ozcivan, A.N.; Can, M.; Ozbek, C.; Karakaya, M. Recent Progresses in Perovskite Solar Cells. In Nanostructured Solar Cells; Das, N., Ed.; Intech: Rijeka, Croatia, 2017; pp. 277–304. ISBN 9783902613042. [Google Scholar]
- Srivastava, R. Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap. In Nanostructured Solar Cells; Das, N., Ed.; Intech: Rijeka, Croatia, 2017; pp. 245–276. ISBN 978-953-51-2936-3. [Google Scholar]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B. Perovskite Solar Cells: An Integrated Hybrid Lifecycle Assessment and Review in Comparison with Other Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Salim, T.; Sun, S.; Abe, Y.; Krishna, A.; Grimsdale, A.; Lam, Y.M. Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance. J. Mater. Chem. A 2015, 3, 8943–8969. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, L. Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1–17. [Google Scholar] [CrossRef]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device Stability of Perovskite Solar Cells—A Review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef]
- Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead Toxicity Update. A Brief Review. Med. Sci. Monit. 2005, 11, RA329–RA336. [Google Scholar] [PubMed]
- Qiu, L.; Ono, L.K.; Qi, Y. Advances and Challenges to the Commercialization of Organic–Inorganic Halide Perovskite Solar Cell Technology. Mater. Today Energy 2018, 7, 169–189. [Google Scholar] [CrossRef]
- Assi, M.A.; Hezmee, M.N.M.; Haron, A.W.; Sabri, M.Y.; Rajion, M.A. The Detrimental Effects of Lead on Human and Animal Health. Vet. World 2016, 9, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, M.S. Toxic Effects of Lead in Humans: An overview. J. Sci. Toxicol. 2013, 2, 157–162. [Google Scholar]
- Babayigit, A.; Thanh, D.D.; Ethirajan, A.; Manca, J.; Muller, M.; Boyen, H.G.; Conings, B. Assessing the Toxicity of Pb- and Sn- Based Perovskite Solar Cells in Model Organism Danio rerio. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Yun, J.H.; Cai, M.; Jiao, Y.; Bernhardt, P.V.; Zhang, M.; Wang, Q.; Du, A.; Wang, H.; Liu, G.; et al. Organic Inorganic Bismuth(III)-based Material: A Lead-Free, Air-Stable and Solution-Processable Light-Absorber Beyond Organolead Perovskites. Nano Res. 2016, 9, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.X.; Liu, J.M. Electronic Structure of Organometal Halide Perovskite CH3NH3BiI3 and Optical Absorption Extending to Infrared Region. Sci. Rep. 2016, 6, 2812–2824. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Meng, W.; Wang, J.; Mitzi, D.B.; Yan, Y. Searching for Promising New Perovskite-based Photovoltaic Absorbers: The Importance of Electronic Dimensionality. Mater. Horizons 2017, 4, 206–216. [Google Scholar] [CrossRef]
- Park, B.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M. Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application. Adv. Mater. Matter 2015, 27, 6806–6813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Xia, X.; Wang, Z.; Huang, Z.; Lei, B.; Gao, Y. High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64%. J. Phys. Chem. Lett. 2017, 8, 4300–4307. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Du, K.Z.; Meng, W.; Wang, J.; Mitzi, D.B.; Yan, Y. Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study. J. Am. Chem. Soc. 2017, 139, 6054–6057. [Google Scholar] [CrossRef] [PubMed]
- Lozhkina, O.A.; Murashkina, A.A.; Elizarov, M.S.; Shilovskikh, V.V.; Zolotarev, A.A.; Kapitonov, Y.V. Microstructural Analysis and Optical Properties of the Halide Double Perovskite Cs2BiAgBr6 Single Crystals. Chem. Phys. Lett. 2018, 694, 18–22. [Google Scholar] [CrossRef]
- Ghebouli, M.A.; Chihi, T.; Ghebouli, B.; Fatmi, M. Study of the Structural, Elastic, Electronic and Optical Properties of Lead-free Halide Double Perovskites Cs2AgBiX6 (X = Br, Cl). Chin. J. Phys. 2018, 56, 323–330. [Google Scholar] [CrossRef]
- Dong, L.; Sun, S.; Deng, Z.; Li, W.; Wei, F.; Qi, Y.; Li, Y.; Li, X.; Lu, P.; Ramamurty, U. Elastic Properties and Thermal Expansion of Lead-free Halide Double Cs2AgBiBr6. Comput. Mater. Sci. 2018, 141, 49–58. [Google Scholar] [CrossRef]
- Yin, W.; Shi, T.; Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. Matter 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Brandt, R.E.; Stevanovi, V.; Ginley, D.S.; Buonassisi, T. Identifying Defect-Tolerant Semiconductors with High Minority-Carrier Lifetimes: Beyond Hybrid Lead Halide Perovskites. MRS Commun. 2015, 5, 265–275. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, J.; Fu, Y.; Yang, D.; Xu, Q.; Yu, L.; Wei, S.; Zhang, L. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via. J. Am. Chem. Soc. 2017, 139, 2630–2638. [Google Scholar] [CrossRef] [PubMed]
- Djurisic, A.; Liu, F.; Tam, H.; Wong, M.; Ng, A.; Surya, C.; Chen, W.; He, Z. Perovskite Solar Cells—An Overview of Critical Issues. Prog. Quantum Electron. 2017, 53, 1–37. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: A review. Monatsh. Chem. 2017, 148, 795–826. [Google Scholar] [CrossRef] [PubMed]
- Morss, L.R.; Siegal, M.; Stenger, L.; Edelstein, N. Preparation of Cubic Chloro Complex Compounds of Trivalent Metals: Cs2NaMCl6. Inorg. Chem. 1970, 9, 1771–1775. [Google Scholar] [CrossRef]
- Volonakis, G.; Haghighirad, A.A.; Milot, R.L.; Sio, W.H.; Filip, M.R.; Wenger, B.; Johnston, M.B.; Herz, L.M.; Snaith, H.J.; Giustino, F. Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. J. Phys. Chem. Lett. 2017, 8, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halide and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Zhao, X.G.; Yang, D.; Sun, Y.; Li, T.; Zhang, L.; Yu, L.; Zunger, A. Cu-In Halide Perovskite Solar Absorbers. J. Am. Chem. Soc. 2017, 139, 6718–6725. [Google Scholar] [CrossRef] [PubMed]
- Volonakis, G.; Filip, M.R.; Haghighirad, A.A.; Sakai, N.; Wenger, B.; Snaith, H.J.; Giustino, F. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavney, A.H.; Hu, T.; Lindenberg, A.M.; Karunadasa, H.I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016, 138, 2138–2141. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.T.; Ball, M.R.; Windl, W.; Woodward, P.M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 2016, 28, 1348–1354. [Google Scholar] [CrossRef]
- Vasala, S.; Karppinen, M. A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 2015, 43, 1–36. [Google Scholar] [CrossRef]
- Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D.; Carpenter, M.; Bristowe, P.; Cheetham, A. The Synthesis, Structure and Electronic Properties of a Lead-Free Hybrid Inorganic-Organic Double Perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horizons 2016, 3, 328–332. [Google Scholar] [CrossRef]
- Wei, F.; Deng, Z.; Sun, S.; Zhang, F.; Evans, D.M.; Kieslich, G.; Tominaka, S.; Carpenter, M.A.; Zhang, J.; Bristowe, P.D.; et al. Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH3NH3)2AgBiBr6. Chem. Mater. 2017, 29, 1089–1094. [Google Scholar] [CrossRef]
- Deng, Z.; Wei, F.; Sun, S.; Kieslich, G.; Cheetham, A.K.; Bristowe, P.D. Exploring the Properties of Lead-Free Hybrid Double Perovskites Using a Combined Computational-Experimental Approach. J. Mater. Chem. A 2016, 4, 12025–12029. [Google Scholar] [CrossRef]
- Cvjetko, P.; Cvjetko, I.; Pavlica, M. Thallium Toxicity in Humans. Arh. Hig. Rada Toksikol. 2010, 61, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; Mcgehee, M.D.; Karunadasa, H.I.A. Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. 2014, 53, 11232–11235. [Google Scholar] [CrossRef] [PubMed]
- Slavney, A.H.; Smaha, R.W.; Smith, I.C.; Jaffe, A.; Umeyama, D.; Karunadasa, H.I. Chemical Approaches to Addressing the Instability and Toxicity of Lead-Halide Perovskite Absorbers. Inorg. Chem. 2016, 56, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yamamoto, K.; Iikubo, S.; Hayase, S.; Ma, T. First-Principles Study of Electronic and Optical Properties of Lead-Free Double Perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I). J. Phys. Chem. Solids 2018, 117, 117–121. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Zheng, C.; Gao, D. Advancements in the Stability of Perovskite Solar Cells: Degradation Mechanisms and Improvements Approaches. RSC Adv. 2016, 6, 38079–38091. [Google Scholar] [CrossRef]
- Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H. Degradation Mechanism of CH3NH3PbI3 Perovskite Materials Upon Exposure to Humid Air. J. Appl. Phys. 2016, 119, 115501. [Google Scholar] [CrossRef]
- Savory, C.N.; Walsh, A.; Scanlon, D.O. Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? ACS Energy Lett. 2016, 1, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.; Patel, J.B.; Horantner, M.; Johnston, M.; Haghighirad, A.A.; Moore, D.; et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability fo Efficient Solar Cells. Adv. Energy Mater. 2016, 6, 1502458. [Google Scholar] [CrossRef]
- Niu, G.; Li, W.; Li, J.; Liang, X.; Wang, L. Enhancement of Thermal Stability for Perovskite Solar Cells Through Cesium Doping. RSC Adv. 2017, 7, 17473–17479. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Sun, L.; Yang, R.; Jiang, L.; Cheng, P.; Hao, Q.; Wang, T.; Lu, R.; Deng, W. Lead-Free and Stable Antimony–Silver-Halide Double Perovskite (CH3NH3)2AgSbI6. Advances 2017, 7, 35175–35180. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Q.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z.; Ting, H.; Sun, W.; Zhong, X.; Wei, S.; et al. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film. Adv. Sci. 2017, 5, 1700759. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Wang, F.; Wu, B.; Lu, J.; Yan, Z.; Liu, X.; Tao, Y. Long Electron-Hole Diffusion Length in High-Quality Lead-Free Double Perovskite Films. Adv. Mater. 2018, 30, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, G.; Kim, T.K.; Kwon, S.; Back, H.; Lee, J.; Lee, S.H.; Kangb, H.; Lee, K. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J. Mater. Chem. A 2014, 41, 17291–17296. [Google Scholar] [CrossRef]
- Slavney, A.H.; Leppert, L.; Bartesaghi, D.; Gold-parker, A.; Toney, M.F.; Savenije, T.J.; Neaton, B.; Karunadasa, H.I. Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption. J. Am. Chem. Soc. 2017, 139, 5015–5018. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Meng, W.; Wang, X.; Yan, Y.; Mitzi, D.B. Double Perovskites Bandgap Engineering of Lead-Free Double Perovskite Cs2AgBiBr6 through Trivalent Metal Alloying. Angew. Chem. Int. Ed. 2017, 56, 8158–8162. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Li, Y.; Chen, L.; Wang, S.; Wang, G.; Sheng, Y.; Shao, G. The Effects of Electron and Hole Transport Layer with the Electrode Work Function on Perovskite Solar Cells. Mod. Phys. Lett. B 2016, 30, 1–10. [Google Scholar] [CrossRef]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current Status of Electron Transport Layers in Perovskite Solar Cells: Materials and Properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, Y.F.; Chen, B.X.; Kuang, D.B.; Su, C.Y. Synthesis and Photocatalytic Application of Stable Lead. Small 2018, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Volonakis, G.; Giustino, F. Surface Properties of Lead-Free Halide Double Perovskites: Possible Visible-Light Photo-Catalysts for Water Splitting. Appl. Phys. Lett. 2018, 112, 1–5. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Z.; Molokeev, M.S.; Zhang, X.; Peng, D.; Liu, Q. Composition Design, Optical Gap and Stability Investigations of Lead-Free Halide Double Perovskite Cs2AgInCl6. J. Mater. Chem. A 2017, 5, 15031–15037. [Google Scholar] [CrossRef]
- Filip, M.R.; Hillman, S.; Haghighirad, A.A.; Snaith, H.J.; Giustino, F. Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. J. Phys. Chem. Lett. 2016, 7, 2579–2585. [Google Scholar] [CrossRef] [PubMed]
- Elliott, N.; Pauling, L. The Crystal Structure of Cesium Aurous Auric Chloride, Cs2AuAuCl6, and Cesium. J. Am. Chem. Soc. 1938, 60, 1846–1851. [Google Scholar] [CrossRef]
- Liu, X.J.; Matsuda, K.; Moritomo, Y.; Nakamura, A.; Kojima, N. Electronic Structure of the Gold Complexes Cs2Au2X6 (X = I, Br, and Cl). Phys. Rev. B 1999, 59, 7925. [Google Scholar] [CrossRef]
- Riggs, S.C.; Shapiro, M.C.; Corredor, F.; Geballe, T.H.; Fisher, I.R.; Mccandless, G.T.; Chan, J.Y. Single Crystal Growth by Self-Flux Method of the Mixed Valence Gold Halides. J. Cryst. Growth 2012, 355, 13–16. [Google Scholar] [CrossRef]
- Matsushita, N.; Kitagawa, H.; Kojima, N. A Three-Dimensional Iodo-Bridged Mixed-Valence Gold(I, III) Compound, Cs2AuIAuIIII6. Acta Crystallogr. Sect. C 1997, C53, 663–666. [Google Scholar] [CrossRef]
Compounds | ∆H/eV | Reference |
---|---|---|
Cs2AgBiCl6 | +0.57 | [47] |
Cs2AgBiBr6 | +0.38 | [47] |
Cs2AgBil6 | −0.41 | [47] |
Cs2InBiCl6 | +0.01 | [47] |
Cs2InBiBr6 | −0.04 | [47] |
Cs2NaSbCl6 | −0.19 | [44] |
Cs2NaBiCl6 | −0.43 | [44] |
Cs2NaSbl6 | +0.49 | [44] |
Cs2NaBil6 | +0.40 | [44] |
Cs2NaBiBr6 | +0.01 | [44] |
Cs2NaSbBr6 | +0.11 | [44] |
Perovskite | B(GPA) | H(GPA) | E(GPA) | ἀ MK−1 | Reference |
---|---|---|---|---|---|
Cs2AgBiBr6 | 27.3 | 0.67 | 22.6 | 27.8 | [23] |
CsPbBr3 | 15.5 | 0.34 | 15.8 | 37.7 | [23] |
MAPbI3 | 10.2 | 0.42 | 10.4 | 43.3 | [39] |
(MA)2AgBiBr6 | 7.7 | 0.55 | 7.9 | 44 | [39] |
Perovskite | Space Group | Synthesis Route | Bandgap (Measured/Theoretical eV) | PCE% | References |
---|---|---|---|---|---|
Cs2AgInCl6 | Fm3m | Solvent evaporation | 3.3/2.7 ± 0.6 | - | [31] |
Fm3m | Hydrothermal | 3.23/3.33 | - | [60] | |
Cs2AgBiCl6 | Fm3m | Solvent evaporation | 2.77/2.62 | - | [36] |
Fm3m | Solid state | 2.2/2.4 | - | [34] | |
Fm3m | Solid state/solvent evaporation | 2.4/- | - | [61] | |
1Cs2AgBiBr6 | Fm3m | Solvent evaporation | 2.19/2.06 | - | [36] |
Fm3m | Solid state | 1.9/1.8 | - | [34] | |
Fm3m | Solid cooling | 1.95/- | - | [35] | |
Fm3m | Solid state/solvent evaporation | 1.8/- | - | [61] | |
Fm3m | Hydrothermal | 2.05/- | 1.22 | [51] | |
Fm3m | Hydrothermal | - | 1.44 | [52] | |
Cs2AgBiI6 | Fm3m | - | -/1.6 | - | [34] |
Cs2AuBiCl6 | Fm3m | - | -/1.6 | - | [34] |
Cs2AuBiBr6 | Fm3m | - | -/1.1 | - | [34] |
Cs2AuBiI6 | Fm3m | - | -/0.5 | - | [34] |
Cs2CuBiCl6 | Fm3m | - | -/2.0 | - | [34] |
Cs2CuBiBr6 | Fm3m | - | -/1.9 | - | [34] |
Cs2CuBiI6 | Fm3m | - | -/1.3 | - | [34] |
Cs2AgInBr6 | Fm3m | - | -/1.50 | - | [33] |
Rb2AgInCl6 | Fm3m | - | -/2.5 | - | [33] |
Rb2AgInBr6 | Fm3m | - | -/1.46 | - | [33] |
Rb2CuInCl6 | Fm3m | - | -/1.36 | - | [33] |
Rb2CuInBr6 | Fm3m | - | -/0.63 | - | [33] |
Cs2AuIAuIIICl6 | I4/mmm | Solid state | 2.04/- | - | [62,63] |
Cs2AuIAuIIIBr6 | I4/mmm | Solid state | 1.31/- | - | [63,64,65] |
Cs2AuIAuIIII6 | I4/mmm | Solid state | 1.60/- | - | [63,64] |
(MA)2AgBiBr6 | Fm3m | Hydrothermal | 2.0/2.02 | - | [39] |
(MA)2KBiCl6 | R3m | Hydrothermal | 3.04/3.08 | - | [38] |
(MA)2AgSbI6 | R3m | Solid state | 1.93/2.12 | - | [50] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, E.; Mutukwa, D.; Zingwe, N.; Taziwa, R. Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites. Metals 2018, 8, 667. https://doi.org/10.3390/met8090667
Meyer E, Mutukwa D, Zingwe N, Taziwa R. Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites. Metals. 2018; 8(9):667. https://doi.org/10.3390/met8090667
Chicago/Turabian StyleMeyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe, and Raymond Taziwa. 2018. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites" Metals 8, no. 9: 667. https://doi.org/10.3390/met8090667
APA StyleMeyer, E., Mutukwa, D., Zingwe, N., & Taziwa, R. (2018). Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites. Metals, 8(9), 667. https://doi.org/10.3390/met8090667