Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies
Abstract
:1. Introduction
2. Simulation Method
2.1. Model and Computational Method
2.2. Materials and Preparation Process
3. Results and Discussion
3.1. Particle Distribution
3.2. Mean Square Displacement of Substrate Atoms
3.3. Surface Roughness of Coatings
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reeswinkel, T.; Sangiovanni, D.G.; Chirita, V.; Hultman, L.; Schneider, J.M. Structure and mechanical properties of TiAlN–WNx thin films. Surf. Coat. Technol. 2011, 205, 4821–4827. [Google Scholar] [CrossRef]
- Mikula, M.; Plašienka, D.; Sangiovanni, D.G.; Sahul, M.; Roch, T.; Truchlý, M.; Gregor, M.; Čaplovič, L.; Plecenik, A.; Kúš, P. Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings. Acta Mater. 2016, 121, 59–67. [Google Scholar] [CrossRef]
- Kindlund, H.; Sangiovanni, D.G.; Lu, J.; Jensen, J.; Chirita, V. Effect of WN content on toughness enhancement in V1-xWxN/MgO(001) thin films. J. Vac Sci. Technol. A 2014, 32, 030603. [Google Scholar] [CrossRef]
- Mikula, M.; Truchly, M.; Sangiovanni, D.G.; Plašienka, D.; Roch, T.; Gregor, M.; Ďurina, P.; Janík, M.; Kúš, P. Experimental and computational studies on toughness enhancement in Ti-Al-Ta-N quaternaries. J. Vac Sci. Technol. A Vac. Surf. Films 2017, 35, 060602. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Mitterer, C.; Hultman, L.; Clemens, H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006, 51, 1032–1114. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. ; Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 2000, 370, 223–231. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, L.R.; Patnaik, P.C.; Zeng, X.T. Wear resistant TiMoN coatings deposited by magnetron sputtering. Wear 2006, 261, 119–125. [Google Scholar] [CrossRef]
- Freund, L.B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Tian, Z.T. , Hu, H., Sun, Y. A molecular dynamics study of effective thermal conductivity in nanocomposites. Int. J. Heat Mass Transf. 2013, 61, 577–582. [Google Scholar] [CrossRef]
- Guo, H.B.; Vassen, R.; Stover, D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surf. Coat. Technol. 2004, 186, 353–363. [Google Scholar] [CrossRef]
- Song, Y.; Zhuan, X.; Wang, T.J.; Chen, X. Evolution of thermal stress in a coating/substrate system during the cooling process of fabrication. Mech. Mater. 2014, 74, 26–40. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.; Li, Q.; Shi, X. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. Int. J. Heat Mass Transf. 2018, 125, 1345–1348. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, Y.; Shi, X.; Song, S. Rapid evaporation of water on graphene/graphene-oxide: A molecular dynamics study. Nanomaterials 2017, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Temirel, M.; Hu, H.; Shabgard, H.; Boettcher, P.; McCarthy, M.; Sun, Y. Solidification of additive-enhanced phase change materials in spherical enclosures with convective cooling. Appl. Therm. Eng. 2017, 111, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Jerome, M. , Herbert M.U. Ferrite-to-austenite and austenite-to-martensite phase transformations in the vicinity of a cementite particle: A molecular dynamics approach. Metals 2018, 8, 602. [Google Scholar]
- Edstrom, D.; Sangiovanni, D.G.; Hultman, L.; Petrov, I.; Greene, J.E.; Chirita, V. Large-scale molecular dynamics simulations of TiN/TiN(001) epitaxial film growth. J. Vac Sci. Technol. A 2016, 34, 041509. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zeng, Q.; Yuan, L.; Qin, Y.; Chen, M.; Shana, D. Molecular dynamics study of the interactions of incident N or Ti atoms with the TiN(001) surface. Appl. Surf. Sci. 2016, 360, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Edström, D.; Sangiovanni, D.G.; Hultman, L.; Petrov, I.; Greene, J.E.; Chirita, V. Effects of incident N atom kinetic energy on TiN/TiN(001) film growth dynamics: A molecular dynamics investigation. J. Appl. Phys. 2017, 121, 025302. [Google Scholar] [CrossRef] [Green Version]
- Adamovic, D.; Munger, E.P.; Chirita, V.; Hultman, L.; Greene, J.E. Low-energy ion irradiation during film growth: Kinetic pathways leading to enhanced adatom migration rates. Appl. Phys. Lett. 2005, 86, 211915. [Google Scholar] [CrossRef]
- Adamovic, D.; Chirita, V.; Munger, E.P.; Hultman, L.; Greeneb, J.E. Enhanced intra-and interlayer mass transport on Pt(111) via 5-50 eV Pt atom impacts on two-dimensional Pt clusters. Thin Solid Films 2006, 515, 2235–2243. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Tasnadi, F.; Hultman, L.; Petrov, I.; Greene, J.E.; Chirita, V. N and Ti adatom dynamics on stoichiometric polar TiN(111) surfaces. Surf. Sci. 2016, 649, 72–79. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Edström, D.; Hultman, L.; Petrov, I.; Greene, J.E.; Chirita, V. Ti adatom diffusion on TiN(001): Ab initio and classical molecular dynamics simulations. Surf. Sci. 2014, 627, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Servet, K.; Fatih, A.C.; Koray, K. The impact of Pt concentration on crystal growth mechanism in Pt-Pd binary alloy system in the context of molecular dynamics. Metals 2018, 8, 926. [Google Scholar]
- Fu, T.; Peng, X.H.; Zhao, Y.B.; Li, T.; Li, Q.; Wang, Z. Molecular dynamics simulation of deformation twin in rocksalt vanadium nitride. J. Alloys Compd. 2016, 675, 128–133. [Google Scholar] [CrossRef]
- Landman, U.; Luedtke, W.D.; Burnham, N.A.; Colton, R.J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 1990, 248, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lee, C. Simulation of molecular dynamics associated with surface roughness on an Al thin film. Surf. Coat. Technol. 2008, 203, 918–921. [Google Scholar] [CrossRef]
- Li, Q.; Peng, X.; Peng, T.; Tang, Q.; Zhang, X.; Huang, C. Molecular dynamics simulation of Cu/Au thin films under temperature gradient. Appl. Surf. Sci. 2015, 357, 1823–1829. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, H.; Liu, Y.; Chen, X. Effects of temperature and strain rate on mechanical behaviors of Stone-Wales defective monolayer black phosphorene. J. Phys. Chem. C 2018, 122, 6368–6378. [Google Scholar] [CrossRef]
- Song, Y.; Lv, Z.; Liu, Y.; Zhuan, X.; Wang, T.J. Effects of coating spray speed and convective heat transfer on transient thermal stress in thermal barrier coating system during the cooling process of fabrication. Appl. Surf. Sci. 2015, 324, 627–633. [Google Scholar] [CrossRef]
- Yildiz, A.; Celik, F. Atomic concentration effect on thermal properties during solidification of Pt-Rh alloy: A molecular dynamics simulation. J. Cryst. Growth 2017, 463, 194–200. [Google Scholar] [CrossRef]
- Muller, K.H. Cluster-beam deposition of thin films: A molecular dynamics simulation. J. Appl. Phys. 1986, 61, 2516–2521. [Google Scholar] [CrossRef]
- Hsieh, M.; Averback, R.S. Molecular dynamics simulations of collisions between energetic clusters of atoms and metal substrates. Phys. Rev. B 1992, 45, 4417–4430. [Google Scholar] [CrossRef]
- Lei, H.; Hou, Q.; Hou, M. Low energy slowing down of nanosize copper clusters on gold(111) surface. Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 164, 537–545. [Google Scholar] [CrossRef]
- Daw, M.S.; Foiles, S.M.; Baskes, M.I. The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 1993, 9, 251–310. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Cui, W.; Wang, L.; Peng, C.; Wang, S.; Wang, Y. Vitrification and crystallization of phase-separated metallic liquid. Metals 2017, 7, 73. [Google Scholar] [CrossRef]
- Kazanc, S. Molecular dynamics study of pressure effect on crystallization behaviour of amorphous Cu-Ni alloy during isothermal annealing. Phys. Lett. A 2007, 365, 473–477. [Google Scholar] [CrossRef]
- Luyten, J.; De Keyzer, J.; Wollants, P.; Creemers, C. Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt-Ph, Pt-Pd, Pd-Ph and ternary Pt-Pd-Rh alloys. Calphad 2009, 33, 370–376. [Google Scholar] [CrossRef]
- Karachevtsev, V.A.; Stepanian, S.G.; Karachevtsev, M.V.; Adamowicz, L. Graphene induced molecular flattening of meso-5,10,15,20-tetraphenyl porphyrin: DFT calculations and molecular dynamics simulations. Comput. Theor. Chem. 2018, 1133, 1–6. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Edström, D.; Hultman, L.; Chirita, V.; Petrov, I.; Greene, J.E. Dynamics of Ti, N, and TiNx (x = 1–3) admolecule transport on TiN(001) surfaces. Phys. Rev. B 2012, 86, 155443. [Google Scholar] [CrossRef]
- Edstrom, D.; Sangiovanni, D.G.; Hultman, L.; Chirita, V.; Petrov, I.; Greene, J.E. Ti and N adatom descent pathways to the terrace from atop two-dimensional TiN/TiN(001) islands. Thin Solid Films 2014, 558, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Sangiovanni, D.G.; Mei, A.B.; Edström, D.; Hultman, L.; Chirita, V.; Petrov, I.; Greene, J.E. Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands. Phys. Rev. B 2018, 97, 035406. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, M.; Liang, Y.; Lin, L.; Fu, T.; Wei, P.; Peng, T. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates. Physica E 2017, 90, 137–142. [Google Scholar] [CrossRef]
- Chung, C.Y.; Chung, Y.C. Molecular dynamics simulation of nano-scale Fe-Al thin film growth. Mater. Lett. 2006, 60, 1063–1067. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Freitas, R.; Asta, M.; de Koning, M. Nonequilibrium free-energy calculation of solids using LAMMPS. Comput. Mater. Sci. 2016, 112, 333–341. [Google Scholar] [CrossRef]
- Chang, Q.; Xie, J.; Mao, A.; Wang, W. Study on interface structure of Cu/Al clad plates by roll casting. Metals 2018, 8, 770. [Google Scholar] [CrossRef]
- Hossein, E.; Parvin, S.; Florian, M.P. Local bond order parameters for accurate determination of crystal structures in two and three dimensions. Phys. Chem. Chem. Phys. 2018, 20, 27059–27068. [Google Scholar]
- Li, Q.; Liu, C.; Chen, X. Molecular characteristics of dissociated water with memory effect from methane hydrates. Int. J. Mod. Phys. B 2014, 28, 1450062. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Wan, K. High-temperature oxidation behavior of Ni-based superalloys with Nb and Y and the interface characteristics of oxidation scales. Surf. Interface Anal. 2014, 47, 362–370. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, W.G.; Li, X.W.; Dong, J.; Zheng, W.; Feng, H.; Lou, L. Effect of surface roughness on the oxidation behavior of a directionally Solidified Ni-based superalloy at 1100 °C. Acta Metall. Sin. 2015, 28, 381–385. [Google Scholar] [CrossRef]
- Çelik, Y.H.; Kilickap, E.; Güney, M. Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools. J. Braz. Soc. Mech. Sci. Eng. 2016, 39, 2085–2093. [Google Scholar] [CrossRef]
- Davey, W.P. Precision measurements of the lattice constants of twelve common metals. Phys. Rev. 1925, 25, 753–761. [Google Scholar] [CrossRef]
Status of Coatings | Incident Energy | ||
---|---|---|---|
0.15 eV | 0.3 eV | 0.6 eV | |
Before annealing (Å) | 2.19 | 2.05 | 2.03 |
After annealing (Å) | 2.05 | 1.93 | 1.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Tian, S.; Peng, T. Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies. Metals 2019, 9, 259. https://doi.org/10.3390/met9020259
Zhang L, Tian S, Peng T. Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies. Metals. 2019; 9(2):259. https://doi.org/10.3390/met9020259
Chicago/Turabian StyleZhang, Linxing, Sen Tian, and Tiefeng Peng. 2019. "Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies" Metals 9, no. 2: 259. https://doi.org/10.3390/met9020259
APA StyleZhang, L., Tian, S., & Peng, T. (2019). Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies. Metals, 9(2), 259. https://doi.org/10.3390/met9020259