Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor
Abstract
:1. Introduction
2. Nonlinear Ultrasonic Test
3. Nonlinearity Adjusted by Attenuation Factor
4. Experiment
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cantrell, J.H.; Yost, W.T. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 2001, 23, 487–490. [Google Scholar] [CrossRef]
- Nagy, P.B. Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 1998, 36, 375–381. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, M.; Xuan, F.Z. Creep damage characterization using nonlinear ultrasonic guided wave method: A mesoscale model. J. Appl. Phys. 2014, 115, 004914. [Google Scholar] [CrossRef]
- Balasubramaniam, K.; Valluri, J.S.; Prakash, R.V. Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Mater. Charact. 2011, 62, 275–286. [Google Scholar] [CrossRef]
- Li, W.; Cho, Y. Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Exp. Mech. 2014, 54, 1309–1318. [Google Scholar] [CrossRef]
- Cantrell, J.H. Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation. J. Appl. Phys. 2006, 100, 063508. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Lee, J.; Cho, Y.; Achenbach, J.D. Assessment of heat treated inconel x-750 alloy by nonlinear ultrasonics. Exp. Mech. 2013, 53, 775–781. [Google Scholar] [CrossRef]
- Jhang, K.Y. Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, J.H. Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. London Ser. A 2004, 460, 757–780. [Google Scholar] [CrossRef]
- Cantrell, J.H. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters. J. Appl. Phys. 1994, 76, 3372–3380. [Google Scholar] [CrossRef]
- Pruell, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Evaluation of plasticity driven material damage using lamb waves. Appl. Phys. Lett. 2007, 91, 231911. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jacobs, L.J.; Qu, J.; Littles, J.W. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 2006, 120, 1266–1273. [Google Scholar] [CrossRef]
- Mini, R.S.; Balasubramaniam, K.; Ravindran, P. An experimental investigation on the influence of annealed microstructure on wave propagation. Exp. Mech. 2015, 55, 1023–1030. [Google Scholar] [CrossRef]
- Zinck, A.A.; Krishnaswamy, S. Ultrasonic nonlinearity measurements on rolled polycrystalline copper. AIP Conf. Proc. 2010, 1211, 1404–1409. [Google Scholar]
- Ogi, H.; Hirao, M.; Aoki, S. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels. J. Appl. Phys. 2001, 90, 438–442. [Google Scholar] [CrossRef]
- Hurley, D.C.; Balzar, D.; Purtscher, P.T.; Hollman, K.W. Nonlinear ultrasonic parameter in quenched martensitic steels. J. Appl. Phys. 1998, 83, 4584–4588. [Google Scholar] [CrossRef]
- Barnard, D.J. Variation of nonlinearity parameter at low fundamental amplitudes. Appl. Phys. Lett. 1999, 74, 2447–2449. [Google Scholar] [CrossRef]
- Abarkane, C.; Gale-Lamuela, D.; Benavent-Climent, A.; Suarez, E.; Gallego, A. Ultrasonic pulse-echo signal analysis for damage evaluation of metallic slit-plate hysteretic dampers. Metals 2017, 7, 526. [Google Scholar] [CrossRef]
- Norris, A.N. Finite-amplitude waves in solids. In Nonlinear Acoustics; Hamilton, M.F., Blackstocks, D.T., Eds.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Rose, J.L. Ultrasonic Waves in Solid Media; Combridge University Press: Combridge, UK, 1999. [Google Scholar]
- Liu, D.; Turner, J.A. Numerical analysis of longitudinal ultrasonic attenuation in sintered materials using a simplified two-phase model. J. Acoust. Soc. Am. 2017, 141, 1226. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, J.H. Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life. J. Appl. Phys. 2009, 106, 093516. [Google Scholar] [CrossRef]
- Hurley, D.C.; Balzar, D.; Purtscher, P.T. Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 2000, 15, 2036–2042. [Google Scholar] [CrossRef]
- ASTM E112-13, Standard Test Methods for Determining Average Grain Size; ASTM International: West Conshohocken, PA, USA, 2013; Available online: http://www.astm.org/cgi-bin/resolver.cgi?E112-13 (accessed on 21 February 2019).
- GB/T6394-2017, Determination of estimating the average grain size of metal (In Chinese); Standardization Administration of China: Beijing, China, 2017; Available online: http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=B83409D8E921097A674E11ED5A66BB06 (accessed on 21 February 2019).
Cu | O | Pb | S | Bi |
---|---|---|---|---|
99.7 | 0.1 | 0.01 | 0.01 | 0.002 |
Cu | Zn | Fe | Pb | P | Sb | Bi |
---|---|---|---|---|---|---|
63.5 | 36 | 0.15 | 0.08 | 0.01 | 0.005 | 0.002 |
Specimens (Copper) | (db/cm) | (db/cm) | (10−2) | (10−2) | (10−2) | |
---|---|---|---|---|---|---|
(a) | 0.0124 | 0.1476 | 1.12 | 3.6 | 4.032 | 0.132 |
(b) | 0.0215 | 0.3792 | 1.37 | 2.0 | 2.74 | 0.23 |
(c) | 0.0205 | 0.3697 | 1.36 | 2.1 | 2.856 | 0.236 |
(d) | 0.0374 | 0.7643 | 1.54 | 1.6 | 2.464 | 0.214 |
Specimens (Brass) | (db/cm) | (db/cm) | (10−2) | (10−2) | (10−2) | |
---|---|---|---|---|---|---|
(a) | 0.0232 | 0.3513 | 1.33 | 4.8 | 6.384 | 0.704 |
(b) | 0.0337 | 0.6018 | 1.63 | 2.4 | 3.912 | 0.712 |
(c) | 0.0316 | 0.5874 | 1.61 | 2.9 | 4.669 | 0.559 |
(d) | 0.0446 | 0.8019 | 1.87 | 1.3 | 2.431 | 0.201 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Chen, B.; Qing, X.; Cho, Y. Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor. Metals 2019, 9, 271. https://doi.org/10.3390/met9030271
Li W, Chen B, Qing X, Cho Y. Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor. Metals. 2019; 9(3):271. https://doi.org/10.3390/met9030271
Chicago/Turabian StyleLi, Weibin, Bingyao Chen, Xinlin Qing, and Younho Cho. 2019. "Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor" Metals 9, no. 3: 271. https://doi.org/10.3390/met9030271
APA StyleLi, W., Chen, B., Qing, X., & Cho, Y. (2019). Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor. Metals, 9(3), 271. https://doi.org/10.3390/met9030271