Mechanical Amorphization and Recrystallization of Mn-Co(Fe)-Ge(Si) Compositions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Diffraction
3.2. Mössbauer Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jeitschko, W. A High-Temperature X-ray Study of the Displacive Phase Transition in MnCoGe. Acta Crystallogr. Sect. B: Struct. Sci. 1975, 31, 1187–1190. [Google Scholar] [CrossRef]
- Johnson, V. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorg. Chem. 1975, 14, 1117–1120. [Google Scholar] [CrossRef]
- Li, G.; Liu, E.; Zhang, H.; Zhang, Y.; Chen, J.; Wang, W.; Zhang, H.; Wu, H.; Yu, H. Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys. J. Magn. Magn. Mater. 2013, 332, 146–150. [Google Scholar] [CrossRef]
- Ozono, K.; Mitsui, Y.; Umetsu, R.; Hiroi, M.; Takahashi, K.; Koyama, K. Magnetic and structural properties of MnCo1-xFexGe (0 ≤ x ≤ 0.12). AIP Conf. Proc. 2016, 1763. [Google Scholar] [CrossRef]
- Lin, S.; Tegus, O.; Bruck, E.; Dagula, W.; Gortenmulder, T.; Buschow, K. Structural and Magnetic Properties of MnFe1-xCoxGe Compounds. IEEE Trans. Mag. 2006, 42, 3776–3778. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.; Tang, Z.; Gao, M.; Dahmen, K.; Liaw, P.; Lu, Z. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Singh, S.; Wanderka, N.; Murty, B.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190. [Google Scholar] [CrossRef]
- Chen, Y.; Tsai, C.; Juan, C.; Chuang, M.; Yeh, J.; Chin, T.; Chen, S. Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloys Compd. 2010, 506, 210–215. [Google Scholar] [CrossRef]
- Blázquez, J.S.; Ipus, J.J.; Moreno-Ramírez, L.M.; Álvarez-Gómez, J.M.; Sánchez-Jiménez, D.; Lozano-Pérez, S.; Franco, V.; Conde, A. Ball milling as a way to produce magnetic and magnetocaloric materials: A review. J. Mater. Sci. 2017, 52, 11834–11850. [Google Scholar] [CrossRef]
- Karati, A.; Nagini, M.; Ghosh, S.; Shabadi, R.; Pradeep, K.G.; Mallik, R.C.; Murty, B.S.; Varadaraju, U.V. Ti2NiCoSnSb—A new halfHeusler type high-entropy alloy showing simultaneous increase in Seebeck coefcient and electrical conductivity for thermoelectric applications. Sci. Rep. 2019, 9, 5331. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, H.; Liu, Z. Effects of the substitution of Cu for Sn on structural, magnetic andmagnetocaloric properties of half-Heusler CoMnSn alloy. J. Alloys Compd. 2019, 777, 472–477. [Google Scholar] [CrossRef]
- Rogl, G.; Yubuta, K.; Romaka, V.V.; Michor, H.; Schafler, E.; Grytsiv, A.; Bauer, E.; Rogl, P. High-ZT half-Heusler thermoelectrics, Ti0.5Zr0.5NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02: Physical properties at low temperatures. Acta Mater. 2019, 166, 466–483. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys. Mater. Trans. JIM 2000, 41, 1372–1378. [Google Scholar] [CrossRef]
Si-Free Alloy | Si-Containing Alloy | ||||||
---|---|---|---|---|---|---|---|
Milling Time (h) | Rexp | Rwp | χ2 | Milling Time (h) | Rexp | Rwp | χ2 |
1 | 2.20 | 3.87 | 1.76 | 1 | 2.36 | 2.90 | 1.23 |
2 | 2.23 | 3.37 | 1.51 | 2 | 2.33 | 2.61 | 1.12 |
5 | 2.29 | 2.98 | 1.30 | 5 | 2.17 | 2.44 | 1.12 |
10 | 2.24 | 2.60 | 1.16 | 10 | 2.26 | 2.39 | 1.06 |
20 | 2.01 | 2.07 | 1.03 | 20 | 2.21 | 2.59 | 1.17 |
30 | 2.01 | 2.08 | 1.07 | 30 | 2.21 | 2.54 | 1.15 |
50 | 2.02 | 2.36 | 1.17 | 50 | 2.22 | 2.31 | 1.04 |
100 | 2.07 | 2.28 | 1.10 | 100 | 2.08 | 2.28 | 1.10 |
Crystalline | 2.16 | 3.08 | 1.43 | Crystalline | 2.22 | 3.37 | 1.52 |
Phase | Space Group | Lattice Parameter (Å) | |
---|---|---|---|
Si-Free | Si-Containing | ||
Mn | I4-3m | 8.916 ± 0.003 | 8.893 ± 0.009 |
Ge | Fd-3m | 5.656 ± 0.002 | 5.656 ± 0.006 |
Fe(Co) | Im-3m | 2.870 ± 0.002 | 2.870 ± 0.002 |
MnCo(Fe)Ge | Pnma | a = 5.20 ± 0.02 b = 4.15 ± 0.04 c = 7.0 ± 0.2 | - |
MnCo(Fe)Ge * | Pnma | a = 5.2822 ± 0.0002 b = 4.0750 ± 0.0003 c = 7.0440 ± 0.0005 | - |
Bcc solid solution * | Im-3m | - | 2.8835 ± 0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Crespo, A.; Ipus, J.J.; Blázquez, J.S.; Conde, A. Mechanical Amorphization and Recrystallization of Mn-Co(Fe)-Ge(Si) Compositions. Metals 2019, 9, 534. https://doi.org/10.3390/met9050534
Vidal-Crespo A, Ipus JJ, Blázquez JS, Conde A. Mechanical Amorphization and Recrystallization of Mn-Co(Fe)-Ge(Si) Compositions. Metals. 2019; 9(5):534. https://doi.org/10.3390/met9050534
Chicago/Turabian StyleVidal-Crespo, Antonio, Jhon J. Ipus, Javier S. Blázquez, and Alejandro Conde. 2019. "Mechanical Amorphization and Recrystallization of Mn-Co(Fe)-Ge(Si) Compositions" Metals 9, no. 5: 534. https://doi.org/10.3390/met9050534
APA StyleVidal-Crespo, A., Ipus, J. J., Blázquez, J. S., & Conde, A. (2019). Mechanical Amorphization and Recrystallization of Mn-Co(Fe)-Ge(Si) Compositions. Metals, 9(5), 534. https://doi.org/10.3390/met9050534