A Macroscopic Strength Criterion for Isotropic Metals Based on the Concept of Fracture Plane
Abstract
:1. Introduction
2. Discussion of the Linear Mohr–Coulomb Criterion
3. Formulation of the Strength Criterion
3.1. Mathematical Expression of the Failure Function
3.2. Failure Function for σn ≤ 0
3.3. Failure Function for σn > 0
3.4. Function of the Failure Envelope
4. Theoretical and Experimental Evaluation
4.1. Failure Modes under Uniaxial Tension and Compression
4.2. Ductile Metallic Material
4.3. Metallic Glass with Moderate Ductility
4.4. Brittle Cast Iron
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, M.H. Advances in strength theories for materials under complex stress state in the 20th Century. Appl. Mech. Rev. 2002, 55, 169. [Google Scholar] [CrossRef]
- Comanici, A.M.; Barsanescu, P.D. Modification of Mohr’s criterion in order to consider the effect of the intermediate principal stress. Int. J. Plast. 2018, 108, 40–54. [Google Scholar] [CrossRef]
- Knops, M. Analysis of Failure in Fiber Polymer Laminates: The Theory of Alfred Puck; Springer: Berlin, German, 2008; pp. 45–46. [Google Scholar]
- Labuz, J.F.; Zang, A. Mohr–Coulomb Failure Criterion. Rock Mech. Rock Eng. 2012, 45, 975–979. [Google Scholar] [CrossRef]
- Jiang, H.; Xie, Y. A note on the Mohr–Coulomb and Drucker–Prager strength criteria. Mech. Res. Commun. 2011, 38, 309–314. [Google Scholar] [CrossRef]
- Dowling, N.E. Mechanical Behavior of Materials/Engineering Methods for Deformation, Fracture, and Fatigue, 4th ed.; Pearson Prentice Hall: Bergen County, NJ, USA, 2013; pp. 118, 300, 305, 311. [Google Scholar]
- Qu, R.T.; Zhang, Z.F. A universal fracture criterion for high-strength materials. Sci. Rep. 2013, 3, 1117. [Google Scholar] [CrossRef]
- Hibbeler, R.C. Mechanics of Materials, 9th ed.; Pearson Prentice Hall: Bergen County, NJ, USA, 2014; p. 528. [Google Scholar]
- Christensen, R.M. The Theory of Materials Failure, 1st ed.; Oxford University Press: London, UK, 2013; pp. 8, 27. [Google Scholar]
- Paul, B. Modification of the Coulomb-Mohr theory of fracture. J. Appl. Mech. 1960, 28, 259–268. [Google Scholar] [CrossRef]
- Bigoni, D.; Piccolroaz, A. Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 2004, 41, 2855–2878. [Google Scholar] [CrossRef] [Green Version]
- Karolczuk, A.; Macha, E. Critical planes in multiaxial fatigue. Mater. Sci. Forum 2005, 482, 109–114. [Google Scholar] [CrossRef]
- Brown, M.W.; Miller, K.J. A theory for fatigue failure under multiaxial stress-strain conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. [Google Scholar] [CrossRef]
- Glinka, G.; Shen, G.; Plumtree, A. A multiaxial fatigue strain energy density parameter related to the critical fracture plane. Fatigue Fract. Eng. Mater. 1995, 18, 37–46. [Google Scholar] [CrossRef]
- Gallo, P.; Sumigawa, T.; Kitamura, T.; Berto, F. Static assessment of nanoscale notched silicon beams using the averaged strain energy density method. Theor. Appl. Fract. Mech. 2018, 95, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Gallo, P.; Yan, Y.; Sumigawa, T.; Kitamura, T. Fracture behavior of nanoscale notched silicon beams investigated by the theory of critical distances. Adv. Theory Simul. 2018, 1, 1700006. [Google Scholar] [CrossRef]
- Qu, R.T.; Zhang, Z.J.; Zhang, P.; Liu, Z.Q.; Zhang, Z.F. Generalized energy failure criterion. Sci. Rep. 2016, 6, 23359. [Google Scholar] [CrossRef]
- Andrianopoulos, N.P.; Manolopoulos, V.M. Can Coulomb criterion be generalized in case of ductile materials? An application to Bridgman experiments. Int. J. Mech. Sci. 2012, 54, 241–248. [Google Scholar] [CrossRef]
- Barsanescu, P.; Sandovici, A.; Serban, A. Mohr–Coulomb criterion with circular failure envelope, extended to materials with strength-differential effect. Mater. Des. 2018, 148, 49–70. [Google Scholar] [CrossRef]
- Li, N.; Gu, J.F.; Chen, P.H. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state. Compos. Struct. 2018, 204, 466–474. [Google Scholar] [CrossRef]
- Baker, R. Nonlinear Mohr Envelopes Based on Triaxial Data. J. Geotech. Geoenviron. 2004, 130, 498–506. [Google Scholar] [CrossRef]
- Gu, J.; Chen, P. A failure criterion for isotropic materials based on Mohr’s failure plane theory. Mech. Res. Commun. 2018, 87, 1–6. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Z.R. Multiple-factor dependence of the yielding behavior to isotropic ductile materials. Comput. Mater. Sci. 2005, 32, 31–46. [Google Scholar] [CrossRef]
- Gu, J.; Chen, P. A failure criterion for homogeneous and isotropic materials distinguishing the different effects of hydrostatic tension and compression. Eur. J. Mech. A-Solids 2018, 70, 7015–7022. [Google Scholar] [CrossRef]
- Abbo, A.J.; Lyamin, A.V.; Sloan, S.W.; Hambleton, J.P. A C2 continuous approximation to the Mohr–Coulomb yield surface. Int. J. Solids Struct. 2011, 48, 3001–3010. [Google Scholar] [CrossRef]
- Zambrano-Mendoza, O.; Valkó, P.P.; Russell, J.E. Error-in-variables for rock failure envelope. Int. J. Rock Mech. Min. Sci. 2003, 40, 137–143. [Google Scholar] [CrossRef]
- Qu, R.T.; Eckert, J.; Zhang, Z.F. Tensile fracture criterion of metallic glass. J. Appl. Phys. 2013, 109, 869. [Google Scholar] [CrossRef]
- Ming, Z.; Mo, L. Comparative study of elastoplastic constitutive models for deformation of metallic glasses. Metals 2012, 2, 488–507. [Google Scholar]
- Grassi, R.C.; Cornet, I. Fracture of gray cast-iron tubes under biaxial stresses. J. Appl. Mech. 1949, 16, 178–182. [Google Scholar]
- Mair, W.M. Fracture criteria for cast iron under biaxial stresses. J. Strain Anal. 1968, 3, 254–263. [Google Scholar] [CrossRef]
Material Type | C/T | θT | θC |
---|---|---|---|
Ductile metallic material [7] | 1.00 | 45.0° | 45.0° |
Metallic glass [7] | 1.11 | 50.7° | 43.0° |
Brittle cast iron [6] | 4.00 | 90.0° | 37.0° |
Material Type | C/T | θT (Predicted) | θC (Predicted) |
---|---|---|---|
Ductile metallic material | 1.00 | 45.0° | 45.0° |
Metallic glass | 1.11 | 46.5° | 43.5° |
Brittle cast iron | 4.00 | 63.4° | 26.6° |
Material Type | Failure Index | Failure Mode | ||
---|---|---|---|---|
Ductile metallic material | 0.00 | 1.00 | 1.00 | Shear |
Metallic glass | −0.15 | 1.15 | Shear | |
Brittle cast iron | −0.76 | 1.76 | Shear |
Material Type | Failure Index | Failure Mode | ||
---|---|---|---|---|
Ductile metallic material | 0.00 | 1.00 | 1.00 | Shear |
Metallic glass | 0.10 | 0.90 | Combination of shear and tension | |
Brittle cast iron | 1.00 | 0.00 | Tension |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Chen, P.; Li, K.; Su, L. A Macroscopic Strength Criterion for Isotropic Metals Based on the Concept of Fracture Plane. Metals 2019, 9, 634. https://doi.org/10.3390/met9060634
Gu J, Chen P, Li K, Su L. A Macroscopic Strength Criterion for Isotropic Metals Based on the Concept of Fracture Plane. Metals. 2019; 9(6):634. https://doi.org/10.3390/met9060634
Chicago/Turabian StyleGu, Jiefei, Puhui Chen, Ke Li, and Lei Su. 2019. "A Macroscopic Strength Criterion for Isotropic Metals Based on the Concept of Fracture Plane" Metals 9, no. 6: 634. https://doi.org/10.3390/met9060634
APA StyleGu, J., Chen, P., Li, K., & Su, L. (2019). A Macroscopic Strength Criterion for Isotropic Metals Based on the Concept of Fracture Plane. Metals, 9(6), 634. https://doi.org/10.3390/met9060634