Effect of Strengthening Methods on the Defect Evolution under Irradiations Investigated with Rate Theory Simulations
Abstract
:1. Introduction
2. Method
2.1. Rate Equations
2.2. Fokker–Planck Method
2.3. Evolution of Dislocation Network
3. Results
3.1. Simulation of Pure Iron under Neutron Irradiation
3.2. Simulation of bcc Iron-Based Alloy with Fine Grain Strengthening
3.3. Simulation of bcc Iron-Based Alloy with Dislocation Strengthening
3.4. Simulation of bcc Iron-Based Alloy with Second Phase Strengthening
3.5. Simulation of bcc Iron-Based Alloy with Solid Solutions Strengthening
4. Discussion
4.1. Effects of Four Strengthening Methods to Microstructures
4.2. The Selection of Strengthening Method
5. Conclusions
- (i)
- Strengthening methods with the enhancement of sink strength (fine grain strengthening, dislocation strengthening and second phase strengthening) have little effects on the evolution of voids, while strengthening method with impediment of migration of defects (solid solutions strengthening) can effectively inhibit the nucleation and growth of voids.
- (ii)
- At a high dose, the contribution of voids dominates the factors that affect irradiation hardening.
- (iii)
- The solid solutions strengthening is the most proper method to inhibit irradiation hardening of bcc iron-based alloy for the restraints to voids.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gelles, D.; Thomas, L.; Davis, J.; Michel, D. Ferritic alloys for use in nuclear energy technologies. In Proceedings of the TMS AIME, Warrendale, PA, USA, 1984; p. 559. [Google Scholar]
- Yu, Y. Rate Theory Study on Irradiation-Induced Dislocation Loops in Reduced Activation Martensitic Steels and Austenitic Steels; Wuhan University: Wuhan, China, 2016. [Google Scholar]
- Maziasz, P.; Klueh, R. ASTM-STP-1046; American Society for Testing and Materials: West Conshohocken, PA, USA, 1989; p. 35. [Google Scholar]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: Berlin, Germany, 2007. [Google Scholar]
- Hashimoto, N.; Tanimoto, J.; Kubota, T.; Kinoshita, H.; Ohnuki, S. Analysis of helium and hydrogen effect on RAFS by means of multi-beam electron microscope. J. Nucl. Mater. 2013, 442, S796–S799. [Google Scholar] [CrossRef]
- Duparc, A.H.; Moingeon, C.; Smetniansky-de-Grande, N.; Barbu, A. Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations. J. Nucl. Mater. 2002, 302, 143–155. [Google Scholar] [CrossRef]
- Meslin, E.; Barbu, A.; Boulanger, L.; Radiguet, R.; Pareige, P.; Arakawa, K.; Fu, C.C. Cluster-dynamics modelling of defects in a-iron under cascade damage conditions. J. Nucl. Mater. 2008, 382, 190–196. [Google Scholar] [CrossRef]
- Jourdan, T.; Bencteux, G.; Adjanor, G. Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach. J. Nucl. Mater. 2014, 444, 298–313. [Google Scholar] [CrossRef]
- Jourdan, T.; Stoltz, G.; Legoll, F.; Monasseb, L. An accurate scheme to solve cluster dynamics equations using a Fokker–Planck approach. Comput. Phys. Commun. 2016, 207, 170–178. [Google Scholar] [CrossRef]
- Xu, D.; Hu, X.; Wirth, B.D. A phase-cut method for multi-species kinetics: Sample application to nanoscale defect cluster evolution in alpha iron following helium ion implantation. Appl. Phys. Lett. 2013, 102, 011904. [Google Scholar] [CrossRef]
- Watanabe, Y.; Morishita, K.; Nakasuji, T.; Ando, M.; Tanigawa, H. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling. Nucl. Instrum. Methods Phys. Res. B 2015, 352, 115–120. [Google Scholar] [CrossRef]
- Kohnert, A.A.; Wirth, B.D.; Capolungo, L. Modeling microstructural evolution in irradiated materials with cluster dynamics methods: A review. Comput. Mater. Sci. 2018, 149, 442–459. [Google Scholar] [CrossRef]
- Christien, F.; Barbu, A. Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling. J. Nucl. Mater. 2005, 346, 272–281. [Google Scholar] [CrossRef]
- Soneda, N.; de la Rubia, T.D. Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation. Philos. Mag. A 1998, 78, 995. [Google Scholar] [CrossRef]
- Wolfer, W.G.; Glasgow, B.B. Dislocation evolution in metals during irradiation. Acta Met. 1985, 33, 1997–2004. [Google Scholar] [CrossRef]
- Jourdan, T. Influence of dislocation and dislocation loop biases on microstructures simulated by rate equation cluster dynamics. J. Nucl. Mater. 2015, 467, 286–301. [Google Scholar] [CrossRef]
- Mayoral, M.H.; Briceño, D.G. PERFECT Project, Advance Report, Deliverable P26. Task II-3-2; Interreg Europe: Lille, France, 2008. [Google Scholar]
- Gao, J.; Yabuuchi, K.; Kimura, A. Ion-irradiation hardening and microstructural evolution in F82H and ferritic alloys. J. Nucl. Mater. 2019, 515, 294–302. [Google Scholar] [CrossRef]
- Lu, Z.; Faulkner, R.G.; Sakaguchi, N.; Kinoshita, H.; Takahashi, H.; Flewitt, P.E.J. Effect of hafnium on radiation-induced inter-granular segregation in ferritic steel. J. Nucl. Mater. 2006, 351, 155–161. [Google Scholar] [CrossRef]
- Li, M.; Kirk, M.A.; Baldo, P.M.; Xu, D.; Wirth, D.B. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 2012, 92, 2048–2078. [Google Scholar] [CrossRef]
- Sakaguchi, N.; Watanabe, S.; Takahashi, H. Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater. 2001, 49, 1129–1137. [Google Scholar] [CrossRef]
- Kano, F.; Fukuya, K.; Hamada, S.; Miwa, Y. Effect of carbon and nitrogen on grain boundary segregation in irradiated stainless steels. J. Nucl. Mater. 1998, 258, 1713–1717. [Google Scholar] [CrossRef]
- Guo, L.; Luo, F.; Yu, Y. Dislocation loops in Irradiated Nuclear Materials; National Defense Industry Press: Beijing, China, 2017. [Google Scholar]
- Kobyashi, S.; Tsuruoka, Y.; Nakai, K.; Kurishita, H. Effect of neutron irradiation on the microstructure and hardness in particle dispersed ultra-fine grained V–Y alloys. J. Nucl. Mater. 2004, 329, 447–451. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, P.; Bai, J.; Zhu, Y.; Wan, F.; Ohnuki, S.; Zhan, Q. In-situ observation of the effect of the precipitate/matrix interface on the evolution of dislocation structures in CLAM steel during irradiation. Fusion Eng. Des. 2014, 89, 2759–2765. [Google Scholar] [CrossRef]
- Oka, H.; Watanabe, M.; Kinoshita, H.; Shibayama, T.; Hashimoto, N.; Ohnuki, S.; Yamashita, S.; Ohtsuka, S. In situ observation of damage structure in ODS austenitic steel during electron irradiation. J. Nucl. Mater. 2011, 417, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Odette, G.R.; Alinger, M.J.; Wirth, B.D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
- Ast, J.; Ghidelli, M.; Durst, K.; Göken, M.; Sebastiani, M.; Korsunsky, A.M. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 2019, 173, 107762. [Google Scholar] [CrossRef]
Symbol | Description | Value | Unit |
---|---|---|---|
Lattice parameter | 2.87 × 10−10 | m | |
Atomic volume | 1.182 × 10−29 | m−3 | |
Index of the largest mobile interstitial cluster | 3 | - | |
Index of the largest mobile vacancy cluster | 4 | - | |
Damage rate | 1.3 × 10−7 | dpa/s | |
Ratio of survival in cascade | 0.3 | - | |
Ratio of clustering for interstitial atoms | 0.9997, 0.0003 | - | |
Ratio of clustering for vacancies | 0.2, 0.8 | - | |
Temperature | 573.15 | K | |
Parameter of mesh in cluster space | 1.03 | - | |
Component of the burgers vector perpendicular to the loop | 2.87 × 10−10 | m | |
Recombination radius | 6.5 × 10−10 | m | |
Diffusion prefactor of clusters | 8.2 × 10−7 | m2/s | |
Migration energy of interstitial clusters | 0.34, 0.42, 0.43 | eV | |
Migration energy of vacancy clusters | 0.83, 0.62, 0.35, 0.48 | eV | |
Absorption efficiency of dislocations | 1.1 | - | |
Absorption efficiency of dislocations | 1.0 | - | |
Formation energy of interstitial atom | 3.64 | eV | |
Formation energy of vacancy | 2.2 | eV | |
Binding energy for interstitial clusters | 0.83, 0.92, 1.64 | eV | |
Binding energy for vacancy clusters | 0.3, 0.37, 0.62, 0.73 | eV | |
Binding energy for interstitial clusters | Capillary law | eV | |
Binding energy for vacancy clusters | Capillary law | eV | |
Initial dislocation density | 1.0 × 1012 | m−2 | |
Grain size | 2.0 × 10−4 | m | |
Burgers vector of dislocations | 2.48 × 10−10 | m | |
Parameter for the annihilation rate of dipoles | 100.0 | - | |
Standard deviation for the distribution of dislocations | 0.3 | - | |
Shear modulus | 83.0 | GPa | |
Poisson’s ratio | 0.29 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Guo, L.; Wei, Y.; Xie, Z.; Long, Y. Effect of Strengthening Methods on the Defect Evolution under Irradiations Investigated with Rate Theory Simulations. Metals 2019, 9, 735. https://doi.org/10.3390/met9070735
Chen C, Guo L, Wei Y, Xie Z, Long Y. Effect of Strengthening Methods on the Defect Evolution under Irradiations Investigated with Rate Theory Simulations. Metals. 2019; 9(7):735. https://doi.org/10.3390/met9070735
Chicago/Turabian StyleChen, Cheng, Liping Guo, Yaxia Wei, Ziyang Xie, and Yunxiang Long. 2019. "Effect of Strengthening Methods on the Defect Evolution under Irradiations Investigated with Rate Theory Simulations" Metals 9, no. 7: 735. https://doi.org/10.3390/met9070735
APA StyleChen, C., Guo, L., Wei, Y., Xie, Z., & Long, Y. (2019). Effect of Strengthening Methods on the Defect Evolution under Irradiations Investigated with Rate Theory Simulations. Metals, 9(7), 735. https://doi.org/10.3390/met9070735