Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications
Abstract
:1. Introduction
2. Material and Experimental Methods
2.1. Chemical Composition, Sampling and Material Processing
2.2. Uniaxial Tensile Testing
2.3. Hardness Measurement
2.4. Microstructural Characterization
3. Results and Discussion
3.1. Tensile Tests
3.2. Strain Hardening Exponent
3.3. Fracture Surface Analysis
3.4. Hardness
3.5. Influence of Microstructure on Mechanical Properties
3.5.1. B360 Grade
3.5.2. B1400 Grade
3.5.3. CrB Grade
4. Conclusions
- -
- All three bainitic steels (irrespective of the heat treatment) perform better than the pearlitic R350HT steel regarding tensile strength, ductility and hardness.
- -
- By using low bainitic transformation temperature and providing enough time for it, nearly complete bainitic transformation is achieved. As a result, a finer bainitic microstructure with smaller-size blocky retained austenite (BRA) results (in comparison to the as-received steel), with almost no martensite (M). This change in the microstructure results in better mechanical properties.
- -
- For B1400-HT and CrB-HT grades, isothermal heat treatment results in smaller size of carbides (in comparison to the as-received steel), which are closely spaced to each other (mostly inside the bainite laths). This results in higher yield strength in heat-treated grades compared to as-received conditions.
- -
- The hardness of bainitic steels increases with heat treatment due to production of large fraction of lower bainite (LB), which is finer, stronger and harder than upper bainite (UB).
- -
- The highest strength, ductility and toughness among all steels investigated here were obtained in B360-HT. These improved properties are associated with the absence of carbides and martensite and formation of fine bainitic microstructure, which consists of bainitic ferrite (BF) laths, thin film retained austenite (TFRA) and small and homogeneously distributed BRA.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clayton, P.; Allery, M.B.P. Metallurgical Aspects of Surface Damage Problems in Rails. Can. Met. Q. 1982, 21, 31–46. [Google Scholar] [CrossRef]
- Dollevoet, R. Design of an Anti Head Check profile based on stress relief. Ph.D. Thesis, University Library/University of Twente, Enschede, The Netherlands, 2010. [Google Scholar]
- Dollevoet, R.; Li, Z.; Arias-Cuevas, O. A Method for the Prediction of Head Checking Initiation Location and Orientation under Operational Loading Conditions. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2010, 224, 369–374. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Esveld, C.; Dollevoet, R.; Molodova, M. An investigation into the causes of squats—Correlation analysis and numerical modeling. Wear 2008, 265, 1349–1355. [Google Scholar] [CrossRef]
- Deng, X.; Qian, Z.; Li, Z.; Dollevoet, R. Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring. Int. J. Fatigue 2018, 112, 94–105. [Google Scholar] [CrossRef]
- Wei, Z.; Núñez, A.; Boogaard, A.; Dollevoet, R.; Li, Z. Method for evaluating the performance of railway crossing rails after long-term service. Tribol. Int. 2018, 123, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Ueda, M.; Uchino, K.; Kobayashi, A. Effects of carbon content on wear property in pearlitic steels. Wear 2002, 253, 107–113. [Google Scholar] [CrossRef]
- Hyzak, J.M.; Bernstein, I.M. The role of microstructure on the strength and toughness of fully pearlitic steels. Met. Mater. Trans. A 1976, 7, 1217–1224. [Google Scholar] [CrossRef]
- Krauss, G.; Grossmann, M.A. Principles of heat treatment of steel; American Society for Metals: Metals Park, OH, USA, 1980; pp. 1890–1952. [Google Scholar]
- Kavishe, F.P.L.; Baker, T.J. Effect of prior austenite grain size and pearlite interlamellar spacing on strength and fracture toughness of a eutectoid rail steel. Mater. Sci. Technol. 1986, 2, 816–822. [Google Scholar] [CrossRef]
- Gladman, T. Material Science and Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 402–432. [Google Scholar]
- Pickering, F.B. Structure-Property Relationships in Steels. In Material Science and Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 43–81. [Google Scholar]
- Pérez-Unzueta, A.J.; Beynon, J.H. Microstructure and wear resistance of pearlitic rail steels. Wear 1993, 162, 173–182. [Google Scholar] [CrossRef]
- Clayton, P.; Danks, D. Effect of interlamellar spacing on the wear resistance of eutectoid steels under rolling-sliding conditions. Wear 1990, 135, 369–389. [Google Scholar] [CrossRef]
- Bouse, G.; Bernstein, I.; Stone, D. Role of Alloying and Microstructure on the Strength and Toughness of Experimental Rail Steels. In Rail Steels—Developments, Processing, and Use; ASTM International: West Conshohocken, PA, USA, 1978. [Google Scholar]
- Marich, S.; Curcio, P. Development of High-Strength Alloyed Rail Steels Suitable for Heavy Duty Applications. In Rail Steels—Developments, Processing, and Use; ASTM International: West Conshohocken, PA, USA, 1978. [Google Scholar]
- Smith, Y.E.; Fletcher, F.B. Alloy steels for high-strength, as-rolled rails. Am. Soc. Test. Mater. Spec. Tech. Publ. 1978, 11, 212–232. Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:10454787 (accessed on 13 September 2018).
- Han, K.; Mottishaw, T.; Smith, G.; Edmonds, D.; Stacey, A. Effects of vanadium additions on microstructure and hardness of hypereutectoid pearlitic steels. Mater. Sci. Eng. A 1995, 190, 207–214. [Google Scholar] [CrossRef]
- Han, K.; Smith, G.D.W.; Edmonds, D.V. Pearlite phase transformation in Si and V steel. Met. Mater. Trans. A 1995, 26, 1617–1631. [Google Scholar] [CrossRef] [Green Version]
- Honeycombe, R.W.K.; Bhadeshia, H.K.D.H. Steels: Microstructure and Properties, 2nd ed.; Edward Arnold: New York, NY, USA, 1995. [Google Scholar]
- Kumar, A.; Agarwal, G.; Petrov, R.; Goto, S.; Sietsma, J.; Herbig, M. Microstructural evolution of white and brown etching layers in pearlitic rail steels. Acta Mater. 2019, 171, 48–64. [Google Scholar] [CrossRef]
- Zuidema, B.K.; Subramanyam, D.K.; Leslie, W.C. The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel. Met. Mater. Trans. A 1987, 18, 1629–1639. [Google Scholar] [CrossRef]
- Peters, N.W. The Performance of Hadfield’s Manganese Steel as It Relates to Manufacture. Available online: https://www.arema.org/files/library/2005_Conference_Proceedings/00040.pdf (accessed on 12 September 2018).
- Schmidova, E.; Hlavaty, I.; Hanus, P. The weldability of the steel with high manganese. Teh. Vjesn. Tech. Gaz. 2016, 23, 749–752. [Google Scholar] [Green Version]
- Havel, D. Austenitic Manganese Steel: A Complete Overview. Available online: https://www.sfsa.org/doc/2017-4.1%20Columbia%20-%20Havel.pdf (accessed on 14 September 2018).
- Lewis, R.; Olofsson, U. Copyright. In Wheel–Rail Interface Handbook; Woodhead Publishing: Sawston, UK, 2009. [Google Scholar] [CrossRef]
- Bain, E.C. Factors affecting the inherent hardenability of steel. J. Heat Treat. 1979, 1, 57–100. [Google Scholar] [CrossRef]
- Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y. Morphology and properties of low-carbon bainite. Met. Mater. Trans. A 1990, 21, 877–888. [Google Scholar] [CrossRef]
- Ohmori, Y. Microstructural Evolutions with Precipitation of Carbides. ISIJ Int. 2001, 41, 554–565. [Google Scholar] [CrossRef]
- Azuma, M.; Fujita, N.; Takahashi, M.; Senuma, T.; Quidort, D.; Lung, T. Modelling Upper and Lower Bainite Trasformation in Steels. ISIJ Int. 2005, 45, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Krauss, G.; Thompson, S.W. Ferritic Microstructures in Continuously Cooled Low- and Ultralow-carbon Steels. ISIJ Int. 1995, 35, 937–945. [Google Scholar] [CrossRef]
- Bakhtiari, R.; Ekrami, A. The effect of bainite morphology on the mechanical properties of a high bainite dual phase (HBDP) steel. Mater. Sci. Eng. A 2009, 525, 159–165. [Google Scholar] [CrossRef]
- Tomita, Y.; Okabayashi, K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite. Met. Mater. Trans. A 1985, 16, 73–82. [Google Scholar] [CrossRef]
- Pickering, F.B. Physical Metallurgy and the Design of Steels; Applied Science Publishers: London, UK, 1978; Available online: http://books.google.com/books?id=k5NTAAAAMAAJ (accessed on 5 August 2018).
- Bhadeshia, H.K. High Performance Bainitic Steels. Mater. Sci. Forum 2005, 500, 63–74. [Google Scholar] [CrossRef]
- Sandvik, B.P.J.; Nevalainen, H.P. Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness. Met. Technol. 1981, 8, 213–220. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Edmonds, D.V. Bainite in Silicon Steels New Composition - Property Approach Part 1. Met. Sci. 1983, 17, 411–419. [Google Scholar] [CrossRef]
- Long, X.; Kang, J.; Lv, B.; Zhang, F. Carbide-free bainite in medium carbon steel. Mater. Des. 2014, 64, 237–245. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Wang, T. A novel bainitic steel comparable to maraging steel in mechanical properties. Scr. Mater. 2013, 68, 763–766. [Google Scholar] [CrossRef]
- Sawley, K.; Kristan, J. Development of bainitic rail steels with potential resistance to rolling contact fatigue. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 1019–1029. [Google Scholar] [CrossRef]
- Clayton, P.; Devanathan, R.; Jin, N.; Steele, R.K. A Review of Bainitic Steels for Wheel/Rail Contact. In Rail Quality and Maintenance for Modern Railway Operation; Kalker, J.J., Cannon, D.F., Orringer, O., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 41–51. [Google Scholar] [CrossRef]
- Hollomon, J.H. Tensile deformation. Trans. AIME 1945, 162, 268–290. [Google Scholar]
- Pointner, P. High strength rail steels—The importance of material properties in contact mechanics problems. Wear 2008, 265, 1373–1379. [Google Scholar] [CrossRef]
- Heyder, R.; Girsch, G. Testing of HSH® rails in high-speed tracks to minimise rail damage. Wear 2005, 258, 1014–1021. [Google Scholar] [CrossRef]
- Lewis, R.; Wang, W.J.; Burstow, M.; Lewis, S.R. Investigation of the Influence of Rail Hardness on the Wear of Rail and Wheel Materials under Dry Conditions Wear and RCF Mechanisms. Proc. Third Int. Conf. Railw. Technol. Res. Dev. Maintenance 2016, 5, 1–17. [Google Scholar] [CrossRef]
- Shipway, P.; Wood, S.; Dent, A. The hardness and sliding wear behaviour of a bainitic steel. Wear 1997, 203, 196–205. [Google Scholar] [CrossRef]
- Abbaszadeh, K.; Saghafian, H.; Kheirandish, S. Effect of Bainite Morphology on Mechanical Properties of the Mixed Bainite-martensite Microstructure in D6AC Steel. J. Mater. Sci. Technol. 2012, 28, 336–342. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Bainite in Steels: Transformations, Microstructure and Properties; IOM Communications Ltd.: London, UK, 2001; Available online: https://books.google.co.id/books?id=sF5RAAAAMAAJ (accessed on 1 August 2018).
- Kunze, K.; Wright, S.I.; Adams, B.L.; Dingley, D.J. Advances in Automatic EBSP Single Orientation Measurements. Textures Microstruct. 1993, 20, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Madison, J.; Spanos, G. Determining phase volume fraction in steels by electron backscattered diffraction. Scr. Mater. 2001, 45, 1335–1340. [Google Scholar] [CrossRef]
- Wu, J.; Wray, P.J.; Garcia, C.I.; Hua, M.; DeArdo, A.J. Image Quality Analysis: A New Method of Characterizing Microstructures. ISIJ Int. 2005, 45, 254–262. [Google Scholar] [CrossRef] [Green Version]
- García-Mateo, C.; Caballero, F.G. The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures. Mater. Trans. 2005, 46, 1839–1846. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Makineni, S.; Dutta, A.; Goulas, C.; Steenbergen, M.; Petrov, R.; Sietsma, J. Design of high-strength and damage-resistant carbide-free fine bainitic steels for railway crossing applications. Mater. Sci. Eng. A 2019, 759, 210–223. [Google Scholar] [CrossRef]
- Podder, A.S.; Lonardelli, I.; Molinari, A.; Bhadeshia, H.K.D.H. Thermal stability of retained austenite in bainitic steel: an in situ study. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2011, 467, 3141–3156. [Google Scholar] [CrossRef]
- Kumar, A.; Dutta, A.; Makineni, S.; Herbig, M.; Petrov, R.; Sietsma, J.; Makeneni, S. In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Mater. Sci. Eng. A 2019, 757, 107–116. [Google Scholar] [CrossRef]
- Hajizad, O.; Kumar, A.; Li, Z.; Petrov, R.H.; Sietsma, J.; Dollevoet, R. Micromechanical modelling of strain partitioning and damage initiation in a continuously cooled carbide free bainitic steel and validation using in-situ tensile experiment. Unpublished work. 2019. [Google Scholar]
- Hajizad, O.; Kumar, A.; Li, Z.; Petrov, R.H.; Sietsma, J.; Dollevoet, R. Crystal plasticity modelling of strain partitioning in high strength carbide free bainitic steel and validation using in-situ tensile experiments. Unpublished work. 2019. [Google Scholar]
- Skobir, D.A.; Vodopivec, F.; Kosec, L.; Jenko, M.; Vojvodič-Tuma, J.; Vojvodič-Tuma, J. Influence of Precipitates Size and Distribution on Room Temperature Mechanical Properties and Accelerated Creep of X20CrMoV121. Steel Res. Int. 2004, 75, 196–203. [Google Scholar] [CrossRef]
- Bracke, L.; Xu, W. Effect of the Cr Content and Coiling Temperature on the Properties of Hot Rolled High Strength Lower Bainitic Steel. ISIJ Int. 2015, 55, 2206–2211. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Xu, G.; Zhou, M.; Hu, H.; Wan, X. The Effects of Cr and Al Addition on Transformation and Properties in Low-Carbon Bainitic Steels. Metals 2017, 7, 40. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, G.; Tian, J.; Hu, H.; Yuan, Q. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition. Metals 2017, 7, 263. [Google Scholar] [CrossRef]
Steel Grade | C | Cr | Mn | Si | V | Mo | S | Cu | Al | P | Ni | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B360 | 0.269 | 0.51 | 1.547 | 1.36 | 0.033 | 0.148 | - | - | - | - | - | 0.006 |
B1400 | 0.363 | 1.146 | 0.934 | 0.694 | 0.095 | 0.713 | 0.0009 | 0.242 | - | - | 0.223 | 0.008 |
CrB | 0.367 | 2.722 | 0.726 | 0.595 | 0.109 | 0.3 | 0.0008 | 0.05 | 0.0069 | 0.0059 | 0.059 | 0.009 |
R350HT | 0.72 | 0.11 | 1.1 | 0.5 | - | - | - | - | 0.004 | 0.02 | - | - |
G (Gauge length) | 30.0 ± 0.1 mm |
D (Diameter) | 6.0 ± 0.1 mm |
R (Minimum radius of fillet) | 6 mm |
A (Minimum length of reduced section) | 36 mm |
L (Full specimen length) | 85 ± 5 mm |
Do (Diameter of the gripping section) | ≥12 mm |
Steels | Eng. Fracture Strain (%) | Eng. Uniform Strain (%) | True Fracture Strain (%) | Yield Strength (MPa) | Ultimate Strength (MPa) | Toughness (GJ/m3) | SHE (-) | Hardness (HV0.1) |
---|---|---|---|---|---|---|---|---|
B360-AR | 19.9 ± 0.9 | 16.6 ± 0.8 | 41.5 ± 1.8 | 915 ± 12 | 1251 ± 13 | 21.5 ± 0.8 | 0.14 ± 0.005 | 380 ± 8 |
B360-HT | 12.9 ± 0.5 | 5.8 ± 0.4 | 171.4 ± 2.7 | 1324 ± 17 | 1879 ± 19 | 20.2 ± 0.4 | 0.16 ± 0.01 | 545 ± 9 |
B1400-AR | 9.98 ± 0.9 | 7.4 ± 0.7 | 99.4 ± 3.1 | 1147 ± 19 | 1394 ± 25 | 12.2 ± 0.7 | 0.10 ± 0.005 | 510 ± 15 |
B1400-HT | 7.77 ± 0.5 | 3.9 ± 0.2 | 167.1 ± 2.2 | 1260 ± 13 | 1678 ± 14 | 10.2 ± 0.5 | 0.15 ± 0.01 | 533 ± 7 |
CrB-AR | 9.4 ± 1.1 | 8.1 ± 0.8 | 27.0 ± 1.7 | 1021 ± 17 | 1517 ± 22 | 11.6 ± 0.7 | 0.18 ± 0.005 | 460 ± 13 |
CrB-HT | 10.6 ± 0.6 | 6.1 ± 0.3 | 151.4 ± 2.9 | 1229 ± 13 | 1657 ± 15 | 14.5 ± 0.4 | 0.14 ± 0.01 | 537 ± 7 |
R350HT | 12.4 ± 0.9 | 8.1 ± 0.4 | 36.2 ± 3.1 | 746 ± 11 | 1245 ± 16 | 12.5 ± 0.6 | 0.24 ± 0.005 | 350 ± 10 |
Steel | Bainite Average Lath Diameter (nm) | BRA Area Fraction (%) | BRA Average Grain Diameter (nm) | Martensite Area Fraction (%) |
---|---|---|---|---|
B360-HT | 2391 ± 348 | 2.2 ± 1.0 | 463 ± 61 | ~0 |
B1400-HT | 2641 ± 478 | 2.8 ± 0.7 | 530 ± 71 | ~0 |
CrB-HT | 2100 ± 358 | 3.3 ± 0.8 | 327 ± 55 | 3.8 ± 0.9 |
Steel | Average Carbide Size (diameter) (nm) | Average Distance between Carbides (nm) | Average Width of Lath-Shaped Carbides (nm) |
---|---|---|---|
B1400-AR | 144 ± 28 | 1225 ± 89 | 128 ± 15 |
B1400-HT | 106 ± 21 | 620 ± 89 | - |
CrB-AR | 127 ± 24 | 1069 ± 55 | - |
CrB-HT | 79 ± 13 | 550 ± 21 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajizad, O.; Kumar, A.; Li, Z.; Petrov, R.H.; Sietsma, J.; Dollevoet, R. Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications. Metals 2019, 9, 778. https://doi.org/10.3390/met9070778
Hajizad O, Kumar A, Li Z, Petrov RH, Sietsma J, Dollevoet R. Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications. Metals. 2019; 9(7):778. https://doi.org/10.3390/met9070778
Chicago/Turabian StyleHajizad, Omid, Ankit Kumar, Zili Li, Roumen H. Petrov, Jilt Sietsma, and Rolf Dollevoet. 2019. "Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications" Metals 9, no. 7: 778. https://doi.org/10.3390/met9070778
APA StyleHajizad, O., Kumar, A., Li, Z., Petrov, R. H., Sietsma, J., & Dollevoet, R. (2019). Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications. Metals, 9(7), 778. https://doi.org/10.3390/met9070778