Elastic Parameters of Paramagnetic Fe–20Cr–20Ni-Based Alloys: A First-Principles Study
Abstract
:1. Introduction
2. Methodology
2.1. Total Energy Calculations
2.2. Elastic Constants
2.3. Numerical Details
3. Results and Discussions
3.1. Assessing the Accuracy of the Paramagnetic fcc Fe–20Cr–20Ni Alloy
3.2. Single-Crystal Elastic Constants
3.3. Polycrystalline Elastic Constants
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Marshall, P. Austenitic Stainless Steel: Microstructure and Mechanical Properties; Elsevier Applied Science Publishers Ltd.: London, UK, 1984. [Google Scholar]
- Davis, J.R. AMS Specialty Handbook: Stainless Steels; AMS International: Geauga County, OH, USA, 1994. [Google Scholar]
- Wrangln, G. An Introduction to Corrosion and Protecting of Metals; Chapman and Hall: New York, NY, USA, 1985. [Google Scholar]
- Majumdar, A.K.; Blanckenhagen, P.V. Magnetic phase diagram of Fe80−xNixCr20 (10≤x≤30) alloys. Phys. Rev. B 1984, 29, 4079–4085. [Google Scholar]
- Ledbetter, H.M.; Kim, S.A. Molybdenum effect on Fe–Cr–Ni-alloy elastic constants. J. Mater. Res. 1988, 3, 40–44. [Google Scholar] [CrossRef]
- Ledbetter, H. Predicted monocrystal elastic constants of 304-type stainless steel. Physica 1985, 128, 1–4. [Google Scholar] [CrossRef]
- Ledbetter, H.M. Sound velocities and elastic constants of steels 304, 310, and 316. Met. Sci. 1980, 14, 595–596. [Google Scholar] [CrossRef]
- Teklu, A.; Ledbetter, H.; Kim, S.; Boatner, L.A.; McGuire, M.; Keppens, V. Single-crystal elastic constants of Fe-15Ni-15Cr alloy. Met. Mater. Trans. A 2004, 35, 3149–3154. [Google Scholar] [CrossRef]
- Dong, Z.; Schönecker, S.; Chen, D.; Li, W.; Long, M.; Vitos, L. Elastic properties of paramagnetic austenitic steel at finite temperature: Longitudinal spin fluctuations in multicomponent alloys. Phys. Rev. B 2017, 96, 174415. [Google Scholar] [CrossRef] [Green Version]
- Vitos, L. The EMTO Method and Applications, Computational Quantum Mechanics for Materials Engineers; Springer: London, UK, 2007. [Google Scholar]
- Vitos, L.; Korzhavyi, P.A.; Johansson, B. Elastic Property Maps of Austenitic Stainless Steels. Phys. Rev. Lett. 2002, 88, 155501. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J.; Sham, L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Andersen, O.K.; Jepsen, O.; Krier, G. Lectures on Methods of Electronic Structure Calculations; World Scientific Publishing: Singapore, 1994. [Google Scholar]
- Andersen, O.K.; Arcangeli, C.; Tank, R.W.; Saha-Dasgupta, T.; Krier, G.; Jepsen, O.; Dasgupta, I. Third-generation TB-LMTO. MRS Online Proc. Libr. Arch. 1998, 491. [Google Scholar] [CrossRef]
- Vitos, L.; Skriver, H.; Johansson, B.; Kollár, J. Application of the exact muffin-tin orbitals theory: The spherical cell approximation. Comput. Mater. Sci. 2000, 18, 24–38. [Google Scholar] [CrossRef]
- Vitos, L. Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 2001, 64, 014107. [Google Scholar] [CrossRef]
- Vitos, L.; Abrikosov, I.A.; Johansson, B. Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory. Phys. Rev. Lett. 2001, 87, 156401. [Google Scholar] [CrossRef] [PubMed]
- Soven, P. Coherent-Potential Model of Substitutional Disordered Alloys. Phys. Rev. 1967, 156, 809–813. [Google Scholar] [CrossRef]
- Györffy, B.L. Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys. Phys. Rev. B 1972, 5, 2382–2384. [Google Scholar] [CrossRef]
- Kollár, J.; Vitos, L.; Skriver, H.L. Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method; Lecture Notes in Physics; Springer: Berlin, Germany, 2000. [Google Scholar]
- Gyorffy, B.L.; Pindor, A.J.; Staunton, J.; Stocks, G.M.; Winter, H. A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F Met. Phys. 1985, 15, 1337–1386. [Google Scholar] [CrossRef]
- Zhang, H.L.; Al-Zoubi, N.; Johansson, B.; Vitos, L. Alloying effects on the elastic parameters of ferromagnetic and paramagnetic Fe from first-principles theory. J. Appl. Phys. 2011, 110, 073707. [Google Scholar] [CrossRef]
- Zhang, H.L.; Punkkinen, M.P.J.; Johansson, B.; Hertzman, S.; Vitos, L. Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory. Phys. Rev. B 2010, 81, 184105. [Google Scholar] [CrossRef]
- Delczeg-Czirjak, E.K.; Delczeg, L.; Ropo, M.; Kokko, K.; Punkkinen, M.P.J.; Johansson, B.; Vitos, L. Ab initio study of the elastic anomalies in Pd-Ag alloys. Phys. Rev. B 2009, 79, 085107. [Google Scholar] [CrossRef]
- Al-Zoubi, N.; Johansson, B.; Nilson, G.; Vitos, L. The Bain path of paramagnetic Fe-Cr based alloys. J. Appl. Phys. 2011, 110, 013708. [Google Scholar] [CrossRef]
- Al-Zoubi, N.; Skorodumova, N.V.; Medvedeva, A.; Andersson, J.; Nilson, G.; Johansson, B.; Vitos, L. Tetragonality of carbon-doped ferromagnetic iron alloys: A first-principles study. Phys. Rev. B 2012, 85, 014112. [Google Scholar] [CrossRef]
- Al-Zoubi, N.; Li, X.; Schönecker, S.; Johansson, B.; Vitos, L. Influence of manganese on the bulk properties of Fe-Cr-Mn alloys: A first-principles study. Phys. Scr. 2014, 89, 125702. [Google Scholar] [CrossRef]
- Al-Zoubi, N.; Schönecker, S.; Johansson, B.; Vitos, L. Assessing the Exact Muffin-Tin Orbitals method for the Bain path of metals. Philos. Mag. 2017, 97, 1243–1264. [Google Scholar] [CrossRef]
- Al-Zoubi, N. First-principles study of the structural and elastic properties of AuxV1–x and AuxNb1–x alloys. Philos. Mag. 2018, 98, 1099–1113. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behavior of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Voigt, W. Elasticitatsconstunten isotroper Korper. Ann. Phys. 1889, 38, 573. [Google Scholar] [CrossRef]
- Reuss, A.; Angew, Z. Berechnung der Fliehgrenze von Mischkristallen auf Grund der Plastizittitsbedingung fiir Einkristalle. Math. Phys. 1929, 9, 49–58. [Google Scholar]
- Korzhavyi, P.A.; Ruban, A.V.; Abrikosov, I.A.; Skriver, H.L.; Korzhavyi, P. Madelung energy for random metallic alloys in the coherent potential approximation. Phys. Rev. B 1995, 51, 5773–5780. [Google Scholar] [CrossRef] [Green Version]
- Moruzzi, V.L.; Janak, J.F.; Schwarz, K. Calculated thermal properties of metals. Phys. Rev. B 1988, 37, 790–799. [Google Scholar] [CrossRef]
- Dyson, D.J.; Holmes, B. Effect of alloying additions on the lattice parameter of Austenite. J. Iron Steel Inst. 1970, 208, 469–474. [Google Scholar]
- Bain, E.C.; Dunkirk, N.Y. The nature of martensite. Trans. Am. Inst. Min. Metall. Eng. 1924, 70, 25. [Google Scholar]
- Söderlind, P.; Eriksson, O.; Wills, J.M.; Boring, A.M. Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 1993, 48, 5844–5851. [Google Scholar] [CrossRef] [PubMed]
- Söderlind, P.; Wills, J.M.; Boring, A.M.; Eriksson, O. Trends of the elastic constants of cubic transition metals. Phys. Rev. Lett. 1992, 68, 2802–2805. [Google Scholar]
- Craievich, P.J.; Sanchez, J.M.; Watson, R.E.; Weinert, M. Structural instabilities of excited phases. Phys. Rev. B 1997, 55, 787–797. [Google Scholar] [CrossRef]
- Craievich, P.J.; Weinert, M.; Sanchez, J.M.; Watson, R.E. Local stability of nonequilibrium phases. Phys. Rev. Lett. 1994, 72, 3076–3079. [Google Scholar] [CrossRef] [PubMed]
- Grimvall, G.; Magyari-Köpe, B.; Ozolins, V.; Persson, K.A. Lattice instabilities in metallic elements. Rev. Mod. Phys. 2012, 84, 945–986. [Google Scholar] [CrossRef] [Green Version]
- Al-Zoubi, N.; Schönecker, S.; Li, X.; Li, W.; Johansson, B.; Vitos, L. Elastic properties of 4d transition metal alloys: Values and trends. Comput. Mater. Sci. 2019, 159, 273–280. [Google Scholar] [CrossRef]
- Kollár, J.; Vitos, L.; Johansson, B.; Skriver, H. Metal Surfaces: Surface, Step and Kink Formation Energies. Phys. Status Solidi B 2000, 217, 405–418. [Google Scholar] [CrossRef]
- Brooks, M.S.S.; Johansson, B. Exchange integral matrices and cohesive energies of transition metal atoms. J. Phys. F Met. Phys. 1983, 13, L197–L202. [Google Scholar] [CrossRef]
- Vitos, L.; Korzhavyi, P.A.; Johansson, B. Stainless steel optimization from quantum mechanical calculations. Nat. Mater. 2003, 2, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Pugh, S.F. XCII. Relations between elastic moduli and plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
System | C11 | C12 | C′ | C44 | B | E | G | B/G | ν |
---|---|---|---|---|---|---|---|---|---|
Fe0.6Cr0.2Ni0.2 (EMTO) | 177 | 124 | 26.6 | 131 | 142 | 181 | 70.1 | 2.03 | 0.288 |
Fe0.62Cr0.19Ni0.19 (Exp) | 204 | 133 | 35.5 | 126 | 157 | 199 | 77.2 | 2.03 | 0.289 |
Percentage error (%) | 13.2 | 6.8 | 25.1 | 3.9 | 9.4 | 9.2 | 9.2 | 0.27 | 0.17 |
System | aexp | C11 | C12 | C′ | C44 |
---|---|---|---|---|---|
Fe–20Cr–20Ni | 3.583 | 177 | 124 | 26.6 | 131 |
Fe–20Cr–20Ni–1.0Al | 3.588 | 176 | 125 | 25.4 | 130 |
Fe–20Cr–20Ni–2.0Al | 3.591 | 176 | 127 | 24.6 | 129 |
Fe–20Cr–20Ni–3.0Al | 3.593 | 176 | 129 | 23.2 | 129 |
Fe–20Cr–20Ni–4.0Al | 3.596 | 177 | 131 | 22.8 | 128 |
Fe–20Cr–20Ni–2.0Co | 3.577 | 183 | 125 | 28.7 | 136 |
Fe–20Cr–20Ni–4.0Co | 3.569 | 190 | 128 | 30.8 | 140 |
Fe–20Cr–20Ni–6.0Co | 3.561 | 197 | 131 | 32.7 | 145 |
Fe–20Cr–20Ni–8.0Co | 3.553 | 204 | 134 | 34.9 | 149 |
Fe–20Cr–20Ni–0.5Cu | 3.586 | 177 | 124 | 26.5 | 130 |
Fe–20Cr–20Ni–1.0Cu | 3.586 | 177 | 125 | 26.1 | 130 |
Fe–20Cr–20Ni–1.5Cu | 3.587 | 178 | 126 | 25.9 | 129 |
Fe–20Cr–20Ni–2.0Cu | 3.588 | 178 | 127 | 25.6 | 129 |
Fe–20Cr–20Ni–0.5Mo | 3.588 | 181 | 128 | 26.3 | 130 |
Fe–20Cr–20Ni–1.0Mo | 3.590 | 181 | 129 | 25.9 | 130 |
Fe–20Cr–20Ni–1.5Mo | 3.593 | 181 | 130 | 25.4 | 130 |
Fe–20Cr–20Ni–2.0Mo | 3.596 | 180 | 130 | 25.0 | 130 |
Fe–20Cr–20Ni–0.5Nb | 3.589 | 176 | 124 | 25.9 | 130 |
Fe–20Cr–20Ni–1.0Nb | 3.593 | 176 | 126 | 24.8 | 129 |
Fe–20Cr–20Ni–1.5Nb | 3.597 | 175 | 127 | 24.0 | 128 |
Fe–20Cr–20Ni–2.0Nb | 3.601 | 176 | 129 | 23.2 | 127 |
Fe–20Cr–20Ni–0.5Ti | 3.587 | 177 | 126 | 25.8 | 130 |
Fe–20Cr–20Ni–1.0Ti | 3.588 | 176 | 126 | 24.9 | 129 |
Fe–20Cr–20Ni–1.5Ti | 3.590 | 177 | 128 | 24.2 | 128 |
Fe–20Cr–20Ni–2.0Ti | 3.591 | 176 | 129 | 23.4 | 128 |
Fe–20Cr–20Ni–1.0V | 3.587 | 176 | 124 | 25.8 | 130 |
Fe–20Cr–20Ni–2.0V | 3.588 | 177 | 127 | 24.8 | 129 |
Fe–20Cr–20Ni–3.0V | 3.590 | 177 | 128 | 24.0 | 128 |
Fe–20Cr–20Ni–4.0V | 3.592 | 177 | 130 | 23.5 | 127 |
Fe–20Cr–20Ni–0.5W | 3.588 | 179 | 126 | 26.3 | 131 |
Fe–20Cr–20Ni–1.0W | 3.591 | 181 | 129 | 26.0 | 131 |
Fe–20Cr–20Ni–1.5W | 3.594 | 182 | 131 | 25.5 | 131 |
Fe–20Cr–20Ni–2.0W | 3.596 | 184 | 134 | 25.0 | 131 |
System | aexp | B | G | B/G | E | ν |
---|---|---|---|---|---|---|
Fe–20Cr–20Ni | 3.583 | 142 | 70.1 | 2.03 | 181 | 0.288 |
Fe–20Cr–20Ni–1.0Al | 3.588 | 142 | 68.6 | 2.06 | 177 | 0.292 |
Fe–20Cr–20Ni–2.0Al | 3.591 | 143 | 67.6 | 2.12 | 175 | 0.296 |
Fe–20Cr–20Ni–3.0Al | 3.593 | 145 | 66.0 | 2.19 | 172 | 0.302 |
Fe–20Cr–20Ni–4.0Al | 3.596 | 146 | 65.4 | 2.24 | 171 | 0.305 |
Fe–20Cr–20Ni–2.0Co | 3.577 | 145 | 73.7 | 1.96 | 189 | 0.282 |
Fe–20Cr–20Ni–4.0Co | 3.569 | 149 | 77.1 | 1.93 | 197 | 0.279 |
Fe–20Cr–20Ni–6.0Co | 3.561 | 153 | 80.5 | 1.90 | 206 | 0.276 |
Fe–20Cr–20Ni–8.0Co | 3.553 | 157 | 84.1 | 1.87 | 214 | 0.273 |
Fe–20Cr–20Ni–0.5Cu | 3.586 | 141 | 69.8 | 2.03 | 180 | 0.288 |
Fe–20Cr–20Ni–1.0Cu | 3.586 | 142 | 69.3 | 2.05 | 179 | 0.290 |
Fe–20Cr–20Ni–1.5Cu | 3.587 | 143 | 68.9 | 2.07 | 178 | 0.292 |
Fe–20Cr–20Ni–2.0Cu | 3.588 | 144 | 68.5 | 2.10 | 177 | 0.295 |
Fe–20Cr–20Ni–0.5Mo | 3.588 | 146 | 69.6 | 2.10 | 180 | 0.294 |
Fe–20Cr–20Ni–1.0Mo | 3.590 | 147 | 69.2 | 2.12 | 180 | 0.296 |
Fe–20Cr–20Ni–1.5Mo | 3.593 | 147 | 68.6 | 2.14 | 178 | 0.298 |
Fe–20Cr–20Ni–2.0Mo | 3.596 | 147 | 68.2 | 2.15 | 177 | 0.299 |
Fe–20Cr–20Ni–0.5Nb | 3.589 | 141 | 69.0 | 2.04 | 178 | 0.290 |
Fe–20Cr–20Ni–1.0Nb | 3.593 | 143 | 67.7 | 2.10 | 175 | 0.295 |
Fe–20Cr–20Ni–1.5Nb | 3.597 | 143 | 66.5 | 2.16 | 173 | 0.299 |
Fe–20Cr–20Ni–2.0Nb | 3.601 | 145 | 65.4 | 2.22 | 171 | 0.304 |
Fe–20Cr–20Ni–0.5Ti | 3.587 | 143 | 69.1 | 2.07 | 178 | 0.292 |
Fe–20Cr–20Ni–1.0Ti | 3.588 | 142 | 68.0 | 2.09 | 176 | 0.294 |
Fe–20Cr–20Ni–1.5Ti | 3.590 | 144 | 66.9 | 2.16 | 174 | 0.299 |
Fe–20Cr–20Ni–2.0Ti | 3.591 | 145 | 65.9 | 2.20 | 172 | 0.303 |
Fe–20Cr–20Ni–1.0V | 3.587 | 142 | 69.0 | 2.05 | 178 | 0.290 |
Fe–20Cr–20Ni–2.0V | 3.588 | 144 | 67.8 | 2.12 | 176 | 0.297 |
Fe–20Cr–20Ni–3.0V | 3.590 | 145 | 66.6 | 2.18 | 173 | 0.301 |
Fe–20Cr–20Ni–4.0V | 3.592 | 146 | 65.8 | 2.22 | 172 | 0.304 |
Fe–20Cr–20Ni–0.5W | 3.588 | 144 | 69.7 | 2.06 | 180 | 0.291 |
Fe–20Cr–20Ni–1.0W | 3.591 | 146 | 69.6 | 2.10 | 180 | 0.295 |
Fe–20Cr–20Ni–1.5W | 3.594 | 148 | 69.1 | 2.15 | 179 | 0.298 |
Fe–20Cr–20Ni–2.0W | 3.596 | 151 | 68.7 | 2.20 | 179 | 0.302 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zoubi, N. Elastic Parameters of Paramagnetic Fe–20Cr–20Ni-Based Alloys: A First-Principles Study. Metals 2019, 9, 792. https://doi.org/10.3390/met9070792
Al-Zoubi N. Elastic Parameters of Paramagnetic Fe–20Cr–20Ni-Based Alloys: A First-Principles Study. Metals. 2019; 9(7):792. https://doi.org/10.3390/met9070792
Chicago/Turabian StyleAl-Zoubi, Noura. 2019. "Elastic Parameters of Paramagnetic Fe–20Cr–20Ni-Based Alloys: A First-Principles Study" Metals 9, no. 7: 792. https://doi.org/10.3390/met9070792
APA StyleAl-Zoubi, N. (2019). Elastic Parameters of Paramagnetic Fe–20Cr–20Ni-Based Alloys: A First-Principles Study. Metals, 9(7), 792. https://doi.org/10.3390/met9070792