The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones
Abstract
:1. Introduction
2. Experimental Matrix
3. Experimental Methods
3.1. Optical Surface Changes and Colorimetry
3.2. Measurement of Water Absorption by Pipe Method (Karsten Tube)
- Protection degree 100% to 95%: hydrophobic;
- Protection degree 94% to 90%: influenced by a hydrophobic effect;
- Protection degree ≤ 89%: hydrophilic.
- PDLP—protection degree under low water pressure for 1 h; in%
- (Wf)B—absorbed amount of water of untreated sandstone after 2 years indoor storage in mL/cm2;
- (Wf)A—absorbed amount of water of treated sandstone in mL/cm2.
3.3. Measurement of Capillary Water Absorption
- ϑQ0.08-2—velocity of water uptake between √0.08 and √2 h in g/m² √h;
- QA,2—absorbed amount of water after 2 h in g/m²;
- QA,0.08—absorbed amount of water after 0.08 h in g/m².
- QBi—absorbed amount of water of untreated sandstone after 2 years indoor storage at the time ti;
- QAi—absorbed amount of water of treated sandstone at the time ti.
3.4. Moisture Distribution Inside the Stone—Degradation Depth
- Ddepth—damaged depth inside the natural stone in [µm];
- At—threshold amplitude, for Obernkirchener Sandstone 0.05 in [–];
- A1—measured amplitude directly below the threshold amplitude in [–];
- A2—measured amplitude directly above the threshold amplitude in [–];
- d1—corresponding depth in which amplitude A1 is measured in [µm];
- d2—corresponding depth in which amplitude A2 is measured in [µm].
4. Results and Discussion
4.1. Optical Surface Changes and Colorimetry
4.2. Comparison of the Protection Degree Calculated from Water Absorption by Pipe Method and Capillary Water Absorption
4.3. Evaluation of the Protective Agents by the Velocity of Water Uptake
4.4. Evaluation of the Protective Agents by the Degradation Depth
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charola, A.E. Water-repellent treatments for building stones: A practical overview. APT Bull. J. Preserv. Technol. 1995, 26, 10–17. [Google Scholar] [CrossRef]
- WTA Merkblatt 3–17: Hydrophobierende Imprägnierung von mineralischen Baustoffen; WTA Merkblatt 3-17-10/D:2010-06; Fraunhofer IRB Verlag: Stuttgart, Germany, 2010.
- De Ferri, L.; Lottici, P.P.; Lorenzi, A.; Montenero, A.; Salvioli-Mariani, E. Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 2011, 12, 356–363. [Google Scholar] [CrossRef]
- Tsakalof, A.; Manoudis, P.; Karapanagiotis, I.; Chryssoulakis, I.; Panayiotou, C. Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J. Cult. Herit. 2007, 8, 69–72. [Google Scholar] [CrossRef]
- Siegesmund, S.; Snethlage, R. (Eds.) Stone in Architecture: Properties, Durability; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Di Tullio, V.; Cocca, M.; Avolio, R.; Gentile, G.; Proietti, N.; Ragni, P.; Errico, M.E.; Capitani, D.; Avella, M. Unilateral NMR investigation of multifunctional treatments on stones based on colloidal inorganic and organic nanoparticles. Magn. Reson. Chem. 2015, 53, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Braun, F.; Orlowsky, J. Steter Tropfen höhlt (nicht) den Stein—Zur Dauerhaftigkeit von Hydrophobierungsmaßnahmen am Baumberger Sandstein. Bauen im Bestand 2018, 4, 8–12. [Google Scholar]
- Moropoulou, A.; Kouloumbi, N.; Haralampopoulos, G.; Konstanti, A.; Michailidis, P. Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog. Org. Coat. 2003, 48, 259–270. [Google Scholar] [CrossRef]
- La Russa, M.F.; Barone, G.; Belfiore, C.M.; Mazzoleni, P.; Pezzino, A. Application of protective products to “Noto” calcarenite (south-eastern Sicily): A case study for the conservation of stone materials. Environ. Earth Sci. 2011, 62, 1263–1272. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Rovella, N.; Belfiore, C.M.; Pogliani, P.; Pelosi, C.; Andaloro, M.; Crisci, G.M. Cappadocian ignimbrite cave churches: Stone degradation and conservation strategies. Period. Mineral. 2014, 83, 187–206. [Google Scholar]
- Mirwald, P.W. Umweltbedingte Gesteinszerstörung untersucht mittels Freilandverwitterungsexperimenten. Sonderheft Bausubstanzerhaltung in der Denkmalpflege, Bautenschutz + Bausanierung S. 1986, 24–27. [Google Scholar]
- Brüggerhoff, S.; Wagener-Lohse, C. Gesteinsverwitterung in Freilandversuchsfeldern—Erfahrungen mit ihrer Errichtung und Nutzung. Sonderheft Bausubstanzerhaltung in der Denkmalpflege S. 1989, 76–80. [Google Scholar]
- Braun, F.; Orlowsky, J. Non-destructive detection of the efficiency of long-term weathered hydrophobic natural stones using single-sided NMR. J. Cult. Herit. 2019. [Google Scholar] [CrossRef]
- Grimm, W.-D. Bildatlas Wichtiger Denkmalgesteine der Bundesrepublik Deutschland; Teil II Bildband; 2. erweiterte Auflage; Ebner Verlag: Ulm, Germany, 2018; ISBN 978-3-87188-247-0. [Google Scholar]
- DE. Conservation of Cultural Property—Test Methods—Determination of Water Absorption by Capillarity; DIN EN 15801:2010-04; DIN German Institute for Standardization: Berlin, Germany, 2010. [Google Scholar]
- DE. Conservation of Cultural Property—Test Methods—Determination of Water Vapour Permeability (δp); DIN EN 15803:2010-04; DIN German Institute for Standardization: Berlin, Germany, 2010. [Google Scholar]
- Braun, F.; Orlowsky, J. Effect of Different Silicic Acid Ester on the Properties of Sandstones with Varying Binders. Restor. Build. Monum. 2018, 23, 1–13. [Google Scholar] [CrossRef]
- DE. Conservation of Cultural Heritage—Surface Protection for Porous Inorganic Materials—Laboratory Test Methods for the Evaluation of the Performance of Water Repellent Products; DIN EN 16581:2015-03; DIN German Institute for Standardization: Berlin, Germany, 2010. [Google Scholar]
- DE. Conservation of Cultural Property—Test Methods—Colour Measurement of Surfaces; DIN EN 15886:2010-12; DIN German Institute for Standardization: Berlin, Germany, 2010. [Google Scholar]
- Malaga, K.; Müller, U. Validation of improvement of procedures for performance testing of anti-graffiti agents on concrete surfaces. In Proceedings of the Sixth International Conference on Concrete under Severe Conditions, Environment and Loading, Mérida, Mexico, 7–9 June 2010. [Google Scholar]
- García, O.; Malaga, K. Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J. Cult. Herit. 2012, 13, 77–82. [Google Scholar] [CrossRef]
- DE. Conservation of Cultural Heritage—Test Methods—Measurement of Water Absorption by Pipe Method; DIN EN 16302:2013-04; DIN German Institute for Standardization: Berlin, Germany, 2010. [Google Scholar]
- Peruzzi, R.; Poli, T.; Toniolo, L. The experimental test for the evaluation of protective treatments: A critical survey of the “capillary absorption index”. J. Cult. Herit. 2003, 4, 251–254. [Google Scholar] [CrossRef]
- Orlowsky, J. Analyzing of coatings on steel-reinforced concrete elements by mobile NMR. Arch. Civ. Eng. 2016, 62, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Baias, M.; Blümich, B. Nondestructive Testing of Objects from Cultural Heritage with NMR. In Modern Magnetic Resonance; Springer Publishing: New York, NY, USA, 2018; Volume 12, pp. 293–304. [Google Scholar] [CrossRef]
- Gibeaux, S.; Thomachot-Schneider, C.; Eyssautier-Chuine, S.; Marin, B.; Vazquez, P. Simulation of acid weathering on natural and artificial building stones according to the current atmospheric SO2/NOx rate. Environ. Earth Sci. 2018, 77, 327. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. Color changes in architectural limestones from pollution and cleaning. Color Res. Appl. 2007, 32, 320–331. [Google Scholar] [CrossRef]
- Vandevoorde, D.; Cnudde, V.; Dewanckele, J.; Brabant, L.; de Bouw, M.; Meynen, V.; Verhaeven, E. Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone. Procedia Chem. 2013, 8, 317–327. [Google Scholar] [CrossRef]
Stone Type | Obernkirchener Sandstone OKS |
---|---|
colour | beige to yellowish-grey, 5 Y 8/1–5 Y 7/2 |
mineral content [14] | quartz 81%, rock fragments 17%, muscovite (subordinated) |
matrix | quartzitic, kaolinitic |
classification | fine-grained quartzitic sandstone |
total porosity [%] | 20 |
bulk density [g/cm3] | 2.16 |
apparent density [g/cm3] | 2.71 |
average pore radius [µm] | 3.4 |
No. | Protective Agent and Content [M.-%] | Penetration Depth [mm] | Water Absorption after 1 h [kg/m²] | Increase of Water Vapour Diffusion Resistance Value [%] |
---|---|---|---|---|
0 | untreated Obernkirchener Sandstone, 2a indoor (reference) | - | 1.38 | |
1 | 34% propyl-/ 5% octyltrimethoxysilane | 7.0 ± 1.8 | 0.03 | 16 |
2 | 35% isobutyltrimethoxysilane | 3.3 ± 3.1 | 0.04 | 5 |
3 | 20% isobutyltrimethoxysilane + 20% tetraethoxysilanehydrolysat | 3.3 ± 2.1 | 0.03 | 15 |
4 | 20% isobutyltrimethoxysilane + 20% tetraethoxysilane | 2.6 ± 2.5 | 0.04 | 12 |
5 | low-molecular methylethoxysiloxane + tetraethoxysilane (∑75%) | 6.7 ± 1.5 | 0.03 | 11 |
6 | 7.5% low-molecular methylethoxysiloxane | 4.0 ± 0.6 | 0.02 | 18 |
7 | 6.7% oligomer methylethoxysiloxane | 3.3 ± 0.5 | 0.03 | 17 |
8 | 5% methyl-/isooctyl silicone resin | 3.4 ± 1.4 | 14 | |
9 | 6.7% oligomer methyl-/isooctylmethoxysiloxane | 2.9 ± 1.1 | 0.03 | 13 |
10 | oligomer methyl-/isooctylmethoxy-siloxane + tetraethoxysilane (∑8.3%) | 3.6 ± 0.8 | 0.03 | 8 |
11 | 8% polymeric methylmethoxy-siloxane (silicone resin) | 3.4 ± 0.6 | 0.03 | 17 |
Location | Exposure Site | Setting |
---|---|---|
Dortmund | located in the west of the city, on an old colliery site (former heavy industrial site) with traffic around, exposure stations situated under trees | residential area/industrial area |
Duisburg | located in the north of the city, exposure stations situated on the green area of a schoolyard under trees | residential area/heavy industrial area |
Eifel | located on agricultural land, exposure stations situated on the edge of a forest | urban area and rural space in the countryside |
Nuremberg | located in the north-west of the city, near a water treatment plant, on a busy street behind bushes | urban area |
Munich | located in the south-west of downtown with a high amount of traffic around the site, exposure stations situated partly under trees | residential area/business area |
Kempten | exposure stations situated on the roof of a tree nursery | residential area |
Title | Exposure Site above Mean Sea Level | Temperature | Freeze-Thaw-Changes | Relative Humidity | Precipitation | Pollution | ||||
---|---|---|---|---|---|---|---|---|---|---|
<0 °C | >25 °C | <50% | >80% | NO₂ | SO₂ | |||||
[m a.s.l.] | [times in h/a] | [1/a] | [times in h/a] | [times/a] | [mm/a] | [µg/m³] | [µg/m³] | |||
Dortmund | 126 | 587 | 274 | 97 | 935 | 5014 | 527 | 947 | 30.4 | 5.7 |
Duisburg | 18 | 441 | 352 | 83 | 1050 | 4775 | 31.1 | 11.1 | ||
Eifel | 579 | 990 | 64 | 91 | 320 | 6129 | 521 | 820 | 9.2 | 5.4 |
Nuremberg | 299 | 968 | 309 | 130 | 975 | 4753 | 447 | 631 | 28.2 | x * |
Munich | 552 | 914 | 333 | 97 | 1126 | 3929 | 408 | 938 | 67.9 | 4.0 |
Kempten | 661 | 1343 | 206 | 189 | 751 | 5166 | 381 | 1177 | 22.0 | x * |
Agent | Indoor | Dortmund | Duisburg | Eifel | Nuremberg | Munich | Kempten | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2a | 30a | 2a | 24a | 2a | 24a | 2a | 24a | 2a | 30a | 2a | 30a | 2a | 30a | |
1 | 100 | 100 | 100 | 95 | 98 | 100 | 98 | 96 | 100 | 97 | 100 | 92 | 98 | 97 |
2 | 100 | 100 | 80 | 91 | 91 | 97 | 50 | 99 | 100 | 95 | 100 | 95 | 100 | 91 |
3 | 99 | 99 | 89 | 95 | 100 | 96 | 57 | 96 | 78 | 95 | 55 | 96 | 100 | 95 |
4 | 100 | 100 | 64 | 95 | 23 | 96 | 86 | 95 | 100 | 96 | 95 | 96 | 100 | 95 |
5 | 97 | 100 | 95 | 99 | 98 | 98 | 98 | 97 | 99 | 95 | 100 | 96 | 100 | 95 |
6 | 99 | 100 | 100 | 100 | 95 | 97 | 100 | 96 | 99 | 98 | 100 | 96 | 100 | 95 |
7 | 100 | 100 | 95 | 95 | 100 | 96 | 100 | 95 | 100 | 95 | 100 | 96 | 100 | 91 |
8 | 96 | 100 | 100 | 97 | 100 | 96 | 100 | 98 | 100 | 96 | 100 | 92 | 100 | 95 |
9 | 100 | 100 | 100 | 91 | 100 | 91 | 100 | 95 | 100 | 92 | 100 | 95 | 99 | 91 |
10 | 98 | 100 | 95 | 98 | 100 | 96 | 100 | 95 | 100 | 93 | 99 | 95 | 100 | 94 |
11 | 100 | 100 | 95 | 96 | 100 | 96 | 100 | 95 | 100 | 95 | 100 | 96 | 100 | 96 |
Agent | Indoor | Dortmund | Duisburg | Eifel | Nuremberg | Munich | Kempten | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2a | 30a | 2a | 24a | 2a | 24a | 2a | 24a | 2a | 30a | 2a | 30a | 2a | 30a | |
1 | 98 | 97 | 95 | 93 | 95 | 88 | 94 | 86 | 96 | 90 | 95 | 81 | 96 | 87 |
2 | 97 | 98 | 85 | 88 | 85 | 81 | 42 | 81 | 95 | 85 | 93 | 80 | 95 | 76 |
3 | 98 | 97 | 82 | 88 | 90 | 66 | 89 | 69 | 87 | 71 | 85 | 95 | 81 | |
4 | 97 | 96 | 65 | 90 | 83 | 91 | 76 | 87 | 93 | 89 | 87 | 85 | 83 | 80 |
5 | 97 | 96 | 95 | 90 | 93 | 92 | 95 | 91 | 95 | 89 | 95 | 87 | 95 | 87 |
6 | 98 | 98 | 96 | 95 | 97 | 88 | 95 | 92 | 97 | 89 | 96 | 84 | 96 | 85 |
7 | 98 | 97 | 95 | 86 | 97 | 92 | 96 | 89 | 97 | 84 | 95 | 83 | 95 | 79 |
8 | 98 | 97 | 96 | 93 | 93 | 97 | 92 | 98 | 88 | 95 | 81 | 96 | 87 | |
9 | 98 | 97 | 94 | 89 | 97 | 86 | 95 | 85 | 96 | 83 | 95 | 78 | 96 | 82 |
10 | 97 | 98 | 90 | 90 | 95 | 90 | 96 | 90 | 96 | 87 | 95 | 84 | 96 | 83 |
11 | 98 | 97 | 96 | 94 | 97 | 93 | 96 | 90 | 97 | 90 | 96 | 88 | 96 | 87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlowsky, J.; Braun, F.; Groh, M. The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones. Buildings 2020, 10, 18. https://doi.org/10.3390/buildings10010018
Orlowsky J, Braun F, Groh M. The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones. Buildings. 2020; 10(1):18. https://doi.org/10.3390/buildings10010018
Chicago/Turabian StyleOrlowsky, Jeanette, Franziska Braun, and Melanie Groh. 2020. "The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones" Buildings 10, no. 1: 18. https://doi.org/10.3390/buildings10010018
APA StyleOrlowsky, J., Braun, F., & Groh, M. (2020). The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones. Buildings, 10(1), 18. https://doi.org/10.3390/buildings10010018