Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków
Abstract
:1. Introduction
- What are the key factors that contribute to PM2.5 and PM10 pollution under the conditions of a small Polish town whose development has historically been based on coal mining?
- Which structures generate the most pollution in this situation?
2. Object and Method of Research
3. Results and Discussion
3.1. Characteristics of Zone A
3.2. Characteristics of Zone B
3.3. Characteristics of Zone C
3.4. Measurements of Air Pollution in the Urban Area of Radzionkow
4. Conclusions
- The location of air pollution measurement stations is crucial as it can affect their readings, and well-ventilated sites at higher altitudes can underreport pollution values;
- The topographic altitude of urban development has a very strong impact on PM2.5 and PM10 air pollution readings;
- Development layouts that inhibit ventilation of the spatial structure adversely affect air quality, even in cases of quite favourable altitude (part of zone C in the southern part of Radzionków);
- Built-up basins and valleys arranged perpendicularly (corridor) to the dominant wind direction, wherein most streets are oriented perpendicular to the most common wind directions, generate very unfavourable initial conditions in terms of air pollution (the shape and form of the Radzionków basin in relation to the wind rose);
- There is evidence in support of the argument that the period during which the Silesian agglomeration and its land ownership structure developed determined their impact on the environment;
- Residential buildings built before 1980 (zone A and B) were observed to generate the greatest air pollution,
- The smallest air pollution was generated by buildings owned by municipalities and education authorities, which rely on the municipal heating grid.
- Using coal for domestic heating should be prohibited in zones A and B of the Radzionków basin on account of their extremely unfavourable topographic conditions, with a requirement to achieve building energy consumption levels as stipulated in applicable Polish construction regulations for 2017, i.e., 95 kWh/(m2annum);
- In zone A, designating ventilation corridors should be a priority, while in zone C, all buildings should be fitted out with insulation;
- The co-financing planned for the insulation of buildings and supporting the replacement of coal-fuelled boilers with gas-powered ones or other heating devices using renewable energy planned in the municipality should apply to zones A and B to a greater extent. Municipal funds should be allocated appropriately for each zone; efficient results can be achieved as a measure of environmental policy in some quantitative value, for example: 55% of funds for zone A, 35% of funds for zone B, 15% of funds for zone C; in addition, the allocated funds should include a clause on the necessity of spending them within a year of receipt;
- The planned measures intended to reduce PM2.5 and PM10 levels should first focus on the centre and then shift outwards from there.
Funding
Conflicts of Interest
References
- Bilgen, S.; Sarıkaya, I. Energy for environment, ecology and sustainable development. Renew. Sustain. Energy Rev. 2015, 51, 1115–1131. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health efects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Hendryx, M.; Fedorko, E. The relationship between toxics release inventory discharges and mortality rates in rural and urban areas of the United States. J. Rural Health 2011, 27, 358–366. [Google Scholar] [CrossRef] [PubMed]
- QUARG. Airborne Particulate Matter in the UK; Third Report of the Quality of Urban Air Review, Group; Harrison, R.M., Ed.; Institute of Public and Environmental Health, University of Birmingham: Birmingham, UK, 1996. [Google Scholar]
- Grewling, Ł.; Bogawski, P.; Kryza, M.; Magyar, D.; Šikoparija, B.; Skjøth, C.A.; Udvardy, O.; Wermer, M.; Smith, M. Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environ. Pollut. 2019, 254, 112948. [Google Scholar] [CrossRef] [PubMed]
- Kozáková, J.; Pokorná, P.; Vodicka, P.; Ondrácková, L.; Ondrácek, J.; Krumal, K.; Mikuška, P.; Hovorka, J.; Moravec, P.; Schwarz, J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ. Sci. Pollut. Res. Int. 2019, 26, 1675–1692. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, J.; Piwowar, A.; Dzikuc, M. Air protection programmes in Poland in the context of the low emission. Environ. Sci. Pollut. Res. 2017, 24, 16316–16327. [Google Scholar] [CrossRef]
- Naydenova, I.; Petrova, T.; Velichkova, R.; Simova, I. PM10 exceedance in Bulgaria. In Proceedings of the CBU International Conference Proceedings, Prague, Czech Republic, 21–23 March 2018; Volume 6, pp. 1129–1138. [Google Scholar]
- Beloconi, A.; Chrysoulakis, N.; Lyapustin, A.; Utzinger, J.; Vounatsou, P. Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products. Environ. Int. 2018, 121, 57–70. [Google Scholar] [CrossRef]
- Gehrsitz, M. The efect of low emission zones on air pollution and infant health. J. Environ. Econ. Manag. 2017, 83, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Ellison, R.B.; Greaves, S.P.; Hensher, D.A. Five years of London’s low emission zone: Effects on vehicle fleet composition and air quality. Transp. Res. D Transp. Environ. 2013, 23, 25–33. [Google Scholar] [CrossRef]
- Holman, C.; Harrison, R.; Querol, X. Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmos. Environ. 2015, 111, 161–169. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Liang, S.; Zhou, J.; Wang, J.; Cao, L.; Qu, S.; Xu, M.; Yang, Z. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour. Conserv. Recycl. 2018, 129, 232–239. [Google Scholar] [CrossRef]
- Alyuz, U.; Alp, K. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey. Sci. Total Environ. 2014, 488, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Makkonen, U.; Hellén, H.; Anttila, P.; Ferm, M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci. Total Environ. 2010, 408, 644–651. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pope, C.A.; Turner, M.C.; Burnett, R.; Jerrett, M.; Gapstur, S.M.; Diver, W.R.; Krewski, D.; Brook, R.D. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ. Res. 2015, 116, 108–115. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Reconstructing primary and secondary components of PM2.5 composition for an urban atmosphere. Aerosol Sci. Technol. 2010, 44, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hu, M.; Wu, Z.; Yue, D.; He, L.; Huang, X.; Liu, X.; Wiedensohler, A. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmos. Chem. Phys. 2013, 13, 10159–10170. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.W.; Fung, J.C.; Yao, T.; Lau, A.K. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method. Atmos. Environ. 2013, 76, 147–161. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Chen, C.; Huang, C.; Huang, H.; Feng, J.; Wang, S.; Wang, H.; Zhang, G.; Zhou, M.; et al. Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. J. Geophys. Res. 2014, 119, 1903–1914. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L. Assessment of the Health Impacts of Particulate Matter Characteristics; Research Report, No 161; Health Effects Institute: Boston, MA, USA, 2012; pp. 5–38. [Google Scholar]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. 2012, 32, 81–95. [Google Scholar] [CrossRef]
- Kim, S.Y.; Peel, J.L.; Hannigan, M.P.; Dutton, S.J.; Sheppard, L.; Clark, M.L.; Vedal, S. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Environ. Health Perspect. 2012, 120, 1094. [Google Scholar] [CrossRef] [Green Version]
- Beckerman, B.S.; Jerrett, M.; Serre, M.; Martin, R.V.; Lee, S.-J.; van Donkelaar, A.; Ross, Z.; Su, J.; Burnett, R.T. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous. United States. Environ. Sci. Technol. 2013, 47, 7233–7241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, G.; Zhang, Q.; Martin, R.V.; van Donkelaar, A.; Huo, H.; Che, H.; Lin, J.; He, K. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 2015, 166, 262–270. [Google Scholar] [CrossRef]
- Just, A.C.; Wright, R.O.; Schwartz, J.; Coull, B.A.; Baccarelli, A.A.; Tellez-Rojo, M.M.; Moody, E.; Wang, Y.; Lyapustin, A.; Kloog, I. Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environ. Sci. Technol. 2015, 49, 8576–8584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Gong, W.; Wang, W.; Ji, Y.; Zhu, Z.; Huang, Y. Ground level PM2.5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI). Int. J. Environ. Res. Public Health 2016, 13, 1215. [Google Scholar] [CrossRef]
- Arain, M.A.; Blair, R.; Finkelstein, N.; Brook, J.R.; Sahsuvaroglu, T.; Beckerman, B.; Zhang, L.; Jerrett, M. The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos. Environ. 2007, 41, 3453–3464. [Google Scholar] [CrossRef]
- Madsen, C.; Carlsen, K.C.L.; Hoek, G.; Oftedal, B.; Nafstad, P.; Meliefste, K.; Jacobsen, R.; Nystad, W.; Carlsen, K.-H.; Brunekreef, B. Modeling the intra-urban variability of outdoor traffic pollution in Oslo,Norway—A GA 2 LEN project. Atmos. Environ. 2007, 41, 7500–7511. [Google Scholar] [CrossRef]
- Wilton, D.; Szpiro, A.; Gould, T.; Larson, T. Improving spatial concentration estimates for nitrogen oxidesusing a hybrid me teorological dispersion/land use regression model in Los Angeles, CA and Seattle, WA.Sci. Total Environ. 2010, 408, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, W.; Chen, Z.; Zeng, G.; Hu, C.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Li, Z.; et al. The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO2 and PM10 concentrations. Atmos. Environ. 2015, 103, 18–24. [Google Scholar] [CrossRef]
- Lam, T.; Niemeier, D. An exploratory study of the impact of common land-use policies on air quality. Transp. Res. D Transp. Environ. 2005, 10, 365–383. [Google Scholar] [CrossRef]
- Bandeira, J.M.; Coelho, M.C.; Sá, M.E.; Tavares, R.; Borrego, C. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total Environ. 2011, 409, 1154–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.S.; Pu, L.J.; Liu, Z. Advances in research on atmospheric environment effects of land use and land cover change. Area Res. Dev. 2013, 32, 123–128. [Google Scholar]
- Chen, L.D.; Sun, R.H.; Liu, H.L. Eco-environmental effects of urban landscape pattern changes: Progresses, problems and perspectives. Acta Ecol. Sin. 2013, 33, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Briggs, D.J.; de Hoogh, C.; Gulliver, J.; Wills, J.; Elliott, P.; Kingham, S.; Smallbone, K. A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Sci. Total Environ. 2000, 253, 151–167. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intra-urban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z.-R. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Duan, D.H.; Guo, Y.M.; Yang, D.X.; Jia, C.; Mi, X.T. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China. J. Atmos. Sol.-Terr. Phys. 2016, 142, 43–54. [Google Scholar] [CrossRef]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2, and PM10, in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Olszowski, T.; Tomaszewska, B.; Góralna-Włodarczyk, K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos. Environ. 2012, 50, 139–147. [Google Scholar] [CrossRef]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Kubiesa, P.; Fulara, I.; Mielżyńska-Švach, D. Indoor air quality in urban and rural kindergartens: Short-term studies in Silesia, Poland. Air Qual. Atmos. Health 2017, 10, 1207–1220. [Google Scholar] [CrossRef] [Green Version]
- Kobza, J.; Geremek, M.; Dul, L. Characteristics of air quality and sources affecting high levels of PM 10 and PM 2.5 in Poland, Upper Silesia urban area. Environ. Monit. Assess. 2018, 190, 515. [Google Scholar] [CrossRef] [Green Version]
- Zajusz-Zubek, E.; Mainka, A.; Korban, Z.; Pastuszka, J.S. Evaluation of highly mobile fraction of trace elements in PM10 collected in Upper Silesia (Poland): Preliminary results. Atmos. Pollut. Res. 2015, 6, 961–968. [Google Scholar] [CrossRef]
- Dzikuc, M.; Kułyk, P.; Urban, S.; Dzikuc, M.; Piwowar, A. Outline of ecological and economic problems associated with the low emission reductions in the Lubuskie Voivodeship. Pol. J. Environ. Stud. 2019, 28, 65–72. [Google Scholar] [CrossRef]
- Nguyen, T.; Park, D.; Lee, Y.; Lee, Y.C. Particulate matter (PM10 and PM2.5) in subway systems: Health-based economic assessment. Sustainability 2017, 9, 2135. [Google Scholar] [CrossRef] [Green Version]
- Dabass, A.; Talbott, E.O.; Venkat, A.; Rager, J.; Marsh, G.M.; Sharma, R.K.; Holguin, F. Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int. J. Hyg. Environ. Health 2016, 219, 301–310. [Google Scholar] [CrossRef]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Fulara, I.; Mielżyńska-Švach, D. Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens, Poland. Air Qual. Atmos. Health 2017, 10, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Kujda, Ł.; Kozacki, D.; Pociech, D.; Hryniewicz, M. Effect of the renewable energy resources on the reduction of pollution emissions from the rural areas. Probl. Agric. Eng. 2016, 93, 59–67. [Google Scholar]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality 192 and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=Celex (accessed on 15 December 2020).
- Low-Emission Economy Plan for the Radzionków Municipality for the Years 2015–2020. Update of the Draft Assumptions to the Plan for the Supply of Heat, Electricity and Gas Fuels for the Radzionków Commune. July 2018. Available online: http://www.bip.radzionkow.pl/?p=documentaction=showid=27696bar_id=17663 (accessed on 15 December 2020).
- Municipal Subsidies for Boiler Replacement in Radzionkow. Available online: http://www.radzionkow.pl/ochrona-zasobow-srodowiska/powietrze/440-dotacje-do-modernizacji-systemu-ogrzewania-z-budzetu-gminy (accessed on 15 December 2020).
- Ordinance of the Minister of Infrastructure of 12th April 2002 Concerning the Technical Conditions to be Met by Buildings and Their Placement. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20020750690 (accessed on 15 December 2020).
- Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. Available online: http://www.euro.who.int/data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 15 December 2020).
- Olvera, H.A.; Garcia, M.; Li, W.-W.; Yang, H.; Amaya, M.A.; Myers, O.; Burchiel, S.W.; Berwick, M.; Pingitore, N.E., Jr. Principal component analysis optimization of a PM2.5 land use regression model with small monitoring network. Sci. Total Environ. 2012, 425, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Reeuwijk, H.V.; Smallbone, K.; Van Der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef] [Green Version]
- He, Z.J.; Yuan, S.L.; Xiao, M. Pollution levels of airborne particulate matter PM10 and PM2.5 in summer inNanchang City. J. Anhui Agric. Sci. 2009, 38, 1336–1338. [Google Scholar]
- Dzikuc, M.; Piwowar, A. Ecological and economic aspects of electric energy production using the biomass co-firing method. The case of Poland. Renew. Sustain. Energy Rev. 2016, 55, 856–862. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blazy, R. Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków. Buildings 2020, 10, 58. https://doi.org/10.3390/buildings10030058
Blazy R. Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków. Buildings. 2020; 10(3):58. https://doi.org/10.3390/buildings10030058
Chicago/Turabian StyleBlazy, Rafał. 2020. "Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków" Buildings 10, no. 3: 58. https://doi.org/10.3390/buildings10030058
APA StyleBlazy, R. (2020). Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków. Buildings, 10(3), 58. https://doi.org/10.3390/buildings10030058