Front End Projects Benefits Realisation from a Requirements Management Perspective—A Systematic Literature Review
Abstract
:1. Introduction
2. The Dynamics of FED
3. Research Methodology
3.1. Aim and Research Questions
- RQ1—What is the state of the art in benefits realisation and requirements management in the design of AEC projects?
- RQ2—What potential requirements categorisations influence requirements definition in FED?
- RQ3—How do these factors impact on benefits realisation in FED?
3.2. Search Strategy
- C1—a string of keywords on benefits realisation, including “project requirement” OR “benefits realization” OR “benefits realisation planning” OR “benefits capture” OR “benefits elicitation” OR “benefits management”.
- C2—a string relating to requirements management including “requirements management” OR “project requirement” OR “requirements engineering” OR “requirements elicitation” OR “requirements capture” OR “Design Requirements” OR “User Requirements” OR “Customer Requirements” OR “Requirements transformation”.
- C3—a string relating to Front End Design including “front end design” OR “front end planning” OR “early-stage design” OR “conceptual design” OR “conceptual design Stage” OR “Front End”.
- C1 and C2, C1 and C3, C2 and C3, and C1, C2 and C3.
- The majority of analysed papers were in the construction sector (81%), while 10% were in the IT sector. Other sectors including the Engineering design (4%), New Product Development (3%) and Product Service Systems Design (2%) are all summarised in the pie chart in Figure 3.
- The study resources covered the leading journals in the areas of AEC, facilities, but also those in IT, sustainability, manufacturing and requirements engineering. Over 70% of articles were from AEC journals resources as summarised in Figure 4.
- Half of the studies had a focus on value management, while only 3% discussed benefits realisation (see Figure 5). A quarter explored FED as a concept important in value delivery, while 22% had a focus on requirements management. These studies were not necessarily exclusive to a particular conceptualisation, meaning that while about 80% were, the rest covered more than one of these conceptualisations.
4. Results and Discussion
4.1. Requirements Management and Benefits Realisation
4.2. Requirements Categorisations for FED
4.2.1. Economics
4.2.2. SocioCultural
4.2.3. Health and Safety
4.2.4. Technical
4.2.5. Lifecycle Performance
4.2.6. Occupancy
4.2.7. Geopolitics
4.2.8. Environment
4.2.9. Governance
5. Conclusions
- The research has drawn to nine specific focus factors as broad categorisations for not only faster identification but also for contextual modelling. This categorisation nonetheless should in no way constrain any emergent categorisations following the evolution of discussion. This means any future emergent positions contributing to these categorisations are welcome.
- Similarly, the 33 factors identified within these broad categorisations serve as no constraint to any future broadening or reconfiguration in any order but instead merely serve as a basis for new understanding and discussion. It is accepted that different research positions and modelling may undoubtedly reconfigure the factors in ways best suitable for them and therefore herein should again serve merely as a basis for further discussion. Moreover, it is vital to highlight the importance of any project or process-specific interdependencies between these factors that can be vital to the realisation of the specific project benefits that this research has not attempted to discern. This represents a future area of significant and active research to draw on the context-specific nature of intermediate and broader project benefits, particularly during FED.
- The study has laboured to draw the vital link between benefits realisation in the perspective of requirements management in FED. It is noticeable that some focus factors such as environmental performance and governance, among others on the one hand; and factors such as collaboration, strategic value and constructability are widely discussed in the literature. However, there appears a limited discussion on their crucial link and contribution to intermediate and wider project benefits realisation. For example, collaboration, strategic value and stakeholder management represent a vital link for requirements management and benefits realisation, but this has to be to recast in an FED perspective. Limited research, however, appears to do this. Moreover, there is no evidence at all that other important factors in benefits perceptions such as family and social and geopolitics are considered within the separate discussions of the key conceptualisations, and certainly not in a unified position. New research understanding is needed in the perspective of FED to help explicate these essential parameters.
- Finally, benefits realisation relies on derived benefits being measurable of benefits along the process of use. However, there has not been any research into any quantitative approaches to support quantitative processes in the practice of benefits realisation. For example, current design discourse uses explanatory and rational approaches to draw on any interdependencies among design factors, something that may be inadequate for the increasingly complex design environment. New quantitative modelling approaches are needed to cope with this increasing complexity to better reflect and capture the essential interdependencies in informing design decision making. New research is, for example, needed into modelling the complex dynamics in user needs changes during and after design, so projects can stay relevant and in step with user needs continually.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Author | Factors | Requirements Category | Study Brief |
---|---|---|---|
Boton [100] | constructability, collaboration | Technical | |
Śladowski [101] | Stakeholder Management, Project Governance | Governance | A study to identify key the means of production employed to measure of performance of projects modelled using a metanetwork; using a modified performance measure for the purposes of identifying key agents, knowledge and resources of a planned project |
Hu [102] | Adaptability, Strategic Value, Project Context | Environment, Economics, Governance | dynamic life cycle assessment (LCA) framework that includes temporal and users’ value choice factors |
Volk, Luu [103] | Specification | Technical | Development of a system for building information acquisition, 3D reconstruction, object detection, building inventory generation and optimized project planning |
Smyth, Lecoeuvre [31] | Project Governance, Strategic value, Political Leadership, Policy, Culture | Governance, Economics, Geopolitics, Sociocultural | A study on the application of benefits realisation concepts to the Hinckley Point C Nuclear Station in the U.K. |
Brioso, Humero [104] | Strategic Value, Policy | Economics, Geopolitics | a value-generation framework for municipalities through the adaptation of the Lean Project Delivery System |
Pal, Takano [105] | Energy Performance | Environmental | A study into life cycle simulation-based optimization of buildings with a focus on the operational carbon footprint (OCF) and embodied carbon footprint (ECF) |
Shen, Tang [106] | Life Cycle Costs, Collaboration, Compliance, | Environment, Technical | An investigation into the critical success factors of Green Buildings and their relationships with GB certification |
Roux, Schalbart [107] | Life cycle costs, Energy Performance, Strategic Value | Environment, Economics | Evaluating life cycle impacts of buildings, integrating climate change and evolution of the energy mix on the long term |
Kemp and Scholl [108] | Community, Policy | Social, Geopolitics | A study into the role of urban experiments for local planning processes through a case-based analysis of the city lab of Maastricht |
Samset and Volden [46] | Project Context, Governance, Stakeholder management, Political Leadership | Governance, Technical, Geopolitics | A study of front-end management and governance of major public investment projects in Norway |
Buyle, Audenaert [70] | Construction Costs, Project Costs, Strategic Value, Energy Performance, Life Cycle costs, Policy, Project Context | Environment, Economics, Geopolitics, Governance | An investigation into scenarios to improve the environmental profile of new buildings in the Flemish/Belgian context |
Russell-Smith and Lepech [92] | collaboration, Life cycle costs, Stakeholder Management, Project Costs | Technical, Environment, Governance, Economics | a method to measure and manage the cradle-to-gate life cycle environmental impacts by linking environmental targets with modern construction management methods, to enable buildings to meet sustainable target values (STV) |
Shackleton, Hebinck [71] | Strategic Value, Community, Policy, Political Leadership, Collaboration, Project Governance | Technical, Governance, Economics, Geopolitics | A study into policy initiatives for urban forestry and greening including the maintenance, use and appreciation of trees on private homesteads of residents of new and older low-income suburbs as well as informal housing areas |
Pignataro, Lobaccaro [83] | Functional Design, Specification, Accessibility | Technical, Life Cycle Performance | Sustainable Design |
Shen, Zhang [109] | Acoustics, Collaboration, Life Cycle Costs, Serviceability | Health and Safety, technical, Life Cycle Performance | An Evaluation of User Pre-Occupancy to enhance the designer–client communication by applying building information modelling, user activity simulation, and requirement management techniques |
Lin [110] | Strategic Value | Economics | A study into tracking and management of interface events by using Network-based Interface Maps (NBIM) |
Himpe, Trappers [93] | Energy Performance, Life Cycle Costs, Serviceability | Environmental, Life Cycle Performance | Examining the life cycle Energy Performance of a Belgian zero-energy reference house |
Lu and Hao [111] | Collaboration, Project Context | Technical, Governance | |
Rezgui, Beach [112] | Stakeholder Management, Compliance | Governance, Technical | a governance approach for managing multi-actor, multi-discipline, and total lifecycle data, |
Ghosh, Amaya [42] | Project Governance, Collaboration, Strategic Value | Governance, Economics | A study to identify problem areas of knowledge creation and management and how these can be aligned to corporate and project objectives |
Abduh, Soemardi [113] | Strategic Value, Project Context | Economics, Governance | Investigating the cost structure of construction supply chains in Indonesia and factors that could influence it |
Liu, Hsueh [114] | Energy Performance | Environmental | Decision making |
Chakraborty [73] | Political Leadership, Project Context, Strategic Value, Physical Performance | Geopolitics, Economics, Environment | A Study into the 1997 River Law, examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp |
Gasafi and Weil [115] | Project Processes | Technical | |
Chandra and Loosemore [116] | Collaboration, Project Governance | Technical, Governance | |
Singh, Gu [117] | constructability, collaboration | Governance, Technical | |
Yeung, Chan [118] | collaboration, strategic value | Technical, Economics | A study into Partnering Performance for seven weighted Key Performance Indicators (KPIs), to support to measurement, monitoring, improvement, and benchmarking of the partnering performance of construction projects |
Appendix B
Author | Methodology | Sector | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | F21 | F22 | F23 | F24 | F25 | F26 | F27 | F28 | F29 | F30 | F31 | F32 | F33 | F34 | F35 | F36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leśniak and Zima [60] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Tezel, Koskela [1] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Hwang, Shan [119] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Callegari, Szklo [61] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
Kruger, Caiado [98] | Qualitative Survey Study | Product Service Systems | ✓ | |||||||||||||||||||||||||||||||||||
Boton [100] | Case Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Knauss, Yussuf [97] | Qualitative Survey Study | IT | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Hujainah, Bakar [120] | Literature Review | IT | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Śladowski [101] | Case Study | Construction | ||||||||||||||||||||||||||||||||||||
Jansson, Viklund [121] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Smyth, Lecoeuvre [31] | Case Study (Interpretive) | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Chesbrough, Lettl [122] | Evaluative Study | New Product Development | ✓ | |||||||||||||||||||||||||||||||||||
Chalhoub and Ayer [123] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Sindhu, Choi [124] | Qualitative Documentary Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Du, Wu [125] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Du, Wu [126] | Literature Review | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Choi, Leite [127] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Garcia-Ceballos, de Andres-Díaz [62] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Hu [102] | Case Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Wang, Zhang [91] | Evaluative Study | Construction | ||||||||||||||||||||||||||||||||||||
Liao, Liao [128] | Evaluative Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Volk, Luu [103] | Case Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Eleftheriadis, Duffour [129] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Thew and Sutcliffe [76] | Evaluative Study | IT | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Han, Li [130] | Exploratory Case Study | Engineering Design | ✓ | |||||||||||||||||||||||||||||||||||
Müller, Ludwig [48] | Evaluative Study | IT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
ul Musawir, Serra [40] | Qualitative Survey Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Pegoraro and Paula [47] | Systematic Literature Review | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Rodrigues and Freire [87] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Carrizo, Dieste [95] | Evaluative Study | IT | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Abeywickrama and Ovaska [131] | Literature Review | IT | ||||||||||||||||||||||||||||||||||||
Goh and Loosemore [132] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Koh [133] | Evaluative Study | Construction | ||||||||||||||||||||||||||||||||||||
Papadonikolaki, Verbraeck [134] | mixed method approach plus caste study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Akcay, Dikmen [135] | Construction | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Sinesilassie, Tabish [136] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Locatelli, Mariani [67] | Evaluative Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
Lin, Zeng [137] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Cavka, Staub-French [63] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
Sleiman, Hempel [138] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Cardenas, Voordijk [139] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Wiese, Ré [140] | Evaluative Study | IT | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Hastie, Sutrisna [141] | Case Study, Survey | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Sanderson and Winch [142] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Mok, Shen [56] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
Samset [143] | Literature Review | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Eckart, McPhee [144] | Literature Review | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Saoud, Omran [145] | Case Study, Survey | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Clarke, Gleeson [146] | Evaluative Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Oraee, Hosseini [147] | Systematic Literature Review | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Vernet and Coste [77] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Buchmann and Karagiannis [148] | Evaluative Study | IT | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Shin, Jeong [149] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Revellino and Mouritsen [150] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Rowlinson [151] | Literature Review | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Pal, Takano [105] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Sousa-Zomer and Miguel [84] | Qualitative Documentary Study | Product Service Systems | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Heikkilä, Paasivaara [152] | Qualitative Survey Study | IT | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Galle, De Temmerman [153] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Shen, Tang [106] | Case Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Brioso, Humero [104] | Action Research | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Dias, Chandratilake [154] | Construction | |||||||||||||||||||||||||||||||||||||
Kpamma, Adjei-Kumi [155] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Hollberg and Ruth [156] | Quantitative Model analysis | Construction | ✓ | |||||||||||||||||||||||||||||||||||
del Caño, Pilar de la Cruz [157] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Haddadi, Johansen [158] | Literature Review | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Davies and Brady [159] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Immonen, Ovaska [160] | Evaluative Study | IT | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Nielsen, Jensen [161] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Jussila, Mainela [162] | Case Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Dave, Kubler [163] | Design Science Research | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Roux, Schalbart [107] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Delmastro, Mutani [164] | Evaluative Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Kemp and Scholl [108] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Addison, Campbell Jenkins [165] | Case Study | Health | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Bacciotti, Borgianni [166] | Qualitative Documentary Study | New Product Development | ✓ | |||||||||||||||||||||||||||||||||||
Malekitabar, Ardeshir [81] | Qualitative Documentary Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Wei, Liu [167] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
Palm and Reindl [69] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Samset and Volden [46] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Ferreira, Almeida [168] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Surlan, Cekic [78] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Müller, Zhai [169] | Qualitative Survey Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Dias, Cabral [170] | Case Study | Engineering Design | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Osei–Kyei and Chan [68] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Bayram, Ocal [171] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Ledoux, Teissandier [172] | Evaluative Study | Engineering Design | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Hoła, Sawicki [173] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Vezzoli, Ceschin [65] | Evaluative Study | Product Service Systems | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
Plewa, Sweeney [174] | Evaluative Study | New Product Development | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Lung, Balasubramaniam [175] | Case Study | IT | ✓ | |||||||||||||||||||||||||||||||||||
Dagan and Isaac [176] | Action Research | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Koh, Förg [177] | Case Study | Engineering Design | ||||||||||||||||||||||||||||||||||||
Li, Arditi [178] | Literature Review | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Inayat, Salim [13] | Case Study | IT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
Buyle, Audenaert [70] | Case Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Singhaputtangkul and Low [179] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Almeida, Sousa [85] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
Russell-Smith and Lepech [92] | Case Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Serra and Kunc [99] | Survey | IT | ✓ | |||||||||||||||||||||||||||||||||||
Jung, Moon [180] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Lu, Wang [181] | Literature Review | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Shackleton, Hebinck [71] | Case Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Too and Weaver [182] | Literature Review | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Locatelli, Mancini [52] | Literature Review | Construction | ||||||||||||||||||||||||||||||||||||
Tserng, Ho [183] | Action Research | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Kw Wong, Kumaraswamy [184] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Chiu, Lowe [88] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Pignataro, Lobaccaro [83] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Shaikh, Nor [185] | Literature Review | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Pemsel, Wiewiora [41] | Literature Review | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
De Schepper, Dooms [186] | Comparative Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Shackleton, Hebinck [71] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
Thomson, Austin [72] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
Himpe, Trappers [93] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Hellström, Ruuska [187] | Exploratory Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Lu and Hao [111] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Im, Montoya [188] | Qualitative Survey Study | New Product Development | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Hsueh, Lee [80] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Williams, Bouchlaghem [89] | Literature Review | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Rezgui, Beach [112] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Lin [110] | Action Research | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Shen, Zhang [109] | Case Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Ghosh, Amaya [42] | Case Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Belkadi, Dremont [189] | Evaluative Study | Engineering Design | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Sanderson [190] | Literature Review | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Liu, Hsueh [114] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Tang, Shen [191] | Literature Review | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Elf, Svedbo Engström [79] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Abduh, Soemardi [113] | Case Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Chakraborty [73] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Cavieres, Gentry [49] | Quantitative Model analysis | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Hopfe and Hensen [192] | Evaluative Study | Construction | ||||||||||||||||||||||||||||||||||||
Gasafi and Weil [115] | Case Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Jay and Bowen [66] | Qualitative Survey Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Yang, Shen [193] | Construction | ✓ | ✓ | |||||||||||||||||||||||||||||||||||
Lin, Chang [75] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||
Leckner and Zmeureanu [194] | Evaluative Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Chandra and Loosemore [116] | Case Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Singh, Gu [117] | Case Study, Interviews | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Baalousha and Çelik [195] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Wolter and Meinel [94] | Evaluative Study | IT | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Adeyeye, Bouchlaghem [90] | Evaluative Study | Construction | ||||||||||||||||||||||||||||||||||||
Gu and London [196] | Qualitative Evaluative Research | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Almeida, Sousa [197] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||
Razavi and Haas [198] | Evaluative Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Luo, Shen [45] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
Chen, Okudan [82] | Literature Review | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Romani, Lahoz [86] | Evaluative Study | IT | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
van de Kar and Den Hengst [96]) | Qualitative Survey Study | IT | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Chung, Kumaraswamy [199] | Literature Review | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Yeung, Chan [118] | Case Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Elf and Malmqvist [51] | Evaluative Study | Construction | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Jallow, Demian [43] | Qualitative Survey Study | Construction | ✓ | ✓ | ||||||||||||||||||||||||||||||||||
Ross, Rhodes [200] | Evaluative Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Yu, Shen [201] | Qualitative Survey Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Baxter, Gao [12] | Case Study | Engineering Design | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||
Moodley, Smith [58] | Evaluative Study | Construction | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
George, Bell [29] | Qualitative Survey Study | Construction | ✓ | |||||||||||||||||||||||||||||||||||
Agouridas, McKay [202] | Case Study/Action research | New Product Development | ✓ | ✓ | ✓ |
References
- Tezel, A.; Koskela, L.; Aziz, Z. Current condition and future directions for lean construction in highways projects: A small and medium-sized enterprises (SMEs) perspective. Int. J. Proj. Manag. 2018, 36, 267–286. [Google Scholar] [CrossRef]
- Serugga, J.; Kagioglou, M.; Tzortzopoulos, P. A predictive method for benefits realisation through modelling uncertainty in front end design. In Proceedings of the 27th Annual Conference of the International Group for Lean Construction (IGLC), Dublin, Ireland, 3–5 July 2019. [Google Scholar]
- Kagioglou, M.; Tzortzopoulos, P. Benefits realisation: An investigation of structure and agency. In Proceedings of the 24th Annual Conference of the International Group for Lean Construction, Boston, MA, USA, 20–22 July 2016; pp. 183–192. [Google Scholar]
- Doherty, N.F. Re-Envisioning the Role of Benefits Realisation in A World Dominated by Robots; Institute of Electrical and Electronics Engineers (IEEE): Grenoble, France, 2016; pp. 1–6. [Google Scholar]
- Bradley, G. Benefit Realisation Management: A Practical Guide to Achieving Benefits through Change; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Yates, K.; Sapountzis, S.; Lou, E.C.W.; Kagioglou, M. Bereal: Tools and Methods for Implementing Benefits Realisation and Management. In Proceedings of the 5th Nordic Conference on Construction Economics and Organisation, Reykjavík, Iceland, 10–12 June 2009. [Google Scholar]
- Walters, L.E.M.; Scott, R.E.; Mars, M. Exploration of benefits realisation management for teledermatology scale-up framework development and sustainable scaling. Inform. Med. Unlocked 2019, 15, 100160. [Google Scholar] [CrossRef]
- Dick, J.; Hull, E.; Jackson, K. Requirements Engineering; Springer: New York, NY, USA, 2017. [Google Scholar]
- Laplante, P.A. Requirements Engineering for Software and Systems; Auerbach Publications: New York, NY, USA, 2017. [Google Scholar]
- Bae, B.-Y.; Kim, S.; Lee, J.-W.; Van Nguyen, N.; Chung, B.-C. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA. Chin. J. Aeronaut. 2017, 30, 738–751. [Google Scholar] [CrossRef]
- Shieh, J.-I.; Wu, H.-H. Applying a hidden Markov chain model in quality function deployment to analyze dynamic customer requirements. Qual. Quant. 2008, 43, 635–644. [Google Scholar] [CrossRef]
- Baxter, D.; Gao, J.; Case, K.; Harding, J.; Young, B.; Cochrane, S.; Dani, S. A framework to integrate design knowledge reuse and requirements management in engineering design. Robot. Comput. Manuf. 2008, 24, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Inayat, I.; Salim, S.S.; Marczak, S.; Daneva, M.; Shamshirband, S. A systematic literature review on agile requirements engineering practices and challenges. Comput. Hum. Behav. 2015, 51, 915–929. [Google Scholar] [CrossRef]
- Burger, K.; White, L.; Yearworth, M. Understanding front-end project workshops with Social Practice Theory. Int. J. Proj. Manag. 2019, 37, 161–175. [Google Scholar] [CrossRef]
- Elzomor, M.; Burke, R.D.; Parrish, K.; Gibson, G.E.; Gibson, G.E. Front-end planning for large and small infrastructure projects: Comparison of project definition rating index tools. J. Manag. Eng. 2018, 34, 04018022. [Google Scholar] [CrossRef]
- Fuentes, M.; Smyth, H. Value co-creation at the front-end of project management: A service-dominant logic perspective. In Proceedings of the 32nd Annual ARCOM Conference; Chan, P., Neilson, C., Eds.; Association of Researchers in Construction Management: Manchester, UK, 2016. [Google Scholar]
- Gibson, G.E., Jr.; Bingham, E.; Stogner, C.R. Front end planning for infrastructure projects. In Construction Research Congress 2010: Innovation for Reshaping Construction Practice; ASCE: Banff, AB, Canada, 2010; pp. 1125–1135. [Google Scholar]
- Serugga, J.; Kagioglou, M.; Tzortzopoulos, P. Value generation in front-end design of social housing with qfd and multiattribute utility theory. J. Constr. Eng. Manag. 2020, 146, 04020019. [Google Scholar] [CrossRef] [Green Version]
- Ost Scherer, J.; Kloeckner, A.P.; Ribeiro, J.L.D.; Pezzotta, G.; Pirola, F. Product-Service System (PSS) design: Using design thinking and business analytics to improve PSS design. Procedia CIRP 2016, 47, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, D. RIBA Plan of Work 2013 Overview; Royal Institute of British Architects: London, UK, 2013. [Google Scholar]
- Lawson, B. How Designers Think: The Design Process Demystified; Architectural Press: London, UK, 2005. [Google Scholar]
- Gibson, G.E., Jr.; Bosfield, R. Common barriers to effective front-end planning of capital projects. In Construction Research Congress 2012: Construction Challenges in a Flat World; ASCE: Denver, CO, USA, 2012; pp. 2459–2468. [Google Scholar] [CrossRef]
- Macmillan, S.; Steele, J.; Austin, S.; Kirby, P.; Spence, R. Development and verification of a generic framework for conceptual design. Des. Stud. 2001, 22, 169–191. [Google Scholar] [CrossRef] [Green Version]
- Blacud, N.A.; Bogus, S.M.; Diekmann, J.; Molenaar, K.R. Sensitivity of construction activities under design uncertainty. J. Constr. Eng. Manag. 2009, 135, 199–206. [Google Scholar] [CrossRef]
- Codinhoto, R.; Koskela, L.; Tzortzopoulos, P.; Kagioglou, M. How analysis and synthesis have been understood in design. In Proceedings of the 14th Annual Conference of the International Group for Lean Construction, Santiago, Chile, 1 January 2006; pp. 121–134. [Google Scholar]
- Laurian, L.; Walker, M.; Crawford, J. Implementing environmental sustainability in local government: The impacts of framing, agency culture, and structure in US cities and counties. Int. J. Public Adm. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Harmon, D.J.; Haack, P.; Roulet, T.J. Microfoundations of institutions: A matter of structure versus agency or level of analysis? Acad. Manag. Rev. 2019, 44, 464–467. [Google Scholar] [CrossRef]
- Almqvist, F. The fuzzy front-end and the forgotten back-end: User involvement in later development phases. Des. J. 2017, 20, S2524–S2533. [Google Scholar] [CrossRef] [Green Version]
- George, R.; Bell, L.C.; Back, W.E. Critical activities in the front-end planning process. J. Manag. Eng. 2008, 24, 66–74. [Google Scholar] [CrossRef]
- Gibson, G.E., Jr.; Irons, K.T.; Ray, M.P. Front end planning for buildings. In Building Integration Solutions; ASCE: Reston, VA, USA, 2006; pp. 1–14. [Google Scholar] [CrossRef]
- Smyth, H.; Lecoeuvre, L.; Vaesken, P. Co-creation of value and the project context: Towards application on the case of Hinkley Point C Nuclear Power Station. Int. J. Proj. Manag. 2018, 36, 170–183. [Google Scholar] [CrossRef]
- Oh, E.H.; Naderpajouh, N.; Hastak, M.; Gokhale, S. Integration of the construction knowledge and expertise in front-end planning. J. Constr. Eng. Manag. 2016, 142, 04015067. [Google Scholar] [CrossRef]
- Halttula, H.; Haapasalo, H.; Aapaoja, A.; Manninen, S. Early involvement and integration in construction projects: The benefits of DfX in elimination of wastes. Int. J. Manag. Knowl. 2017, 6, 215–237. [Google Scholar]
- Kukulies, J.; Schmitt, R. Stabilizing production ramp-up by modeling uncertainty for product design verification using Dempster–Shafer theory. CIRP J. Manuf. Sci. Technol. 2018, 23, 187–196. [Google Scholar] [CrossRef]
- Jung, Y. Automated front-end planning for cost and schedule: Variables for theory and implementation. In AEI 2008: Building Integration Solutions; ASCE: Denver, Colorado, 2008; pp. 1–10. [Google Scholar]
- Xiao, Y.; Watson, M. Guidance on conducting a systematic literature review. J. Plan. Educ. Res. 2017, 39, 93–112. [Google Scholar] [CrossRef]
- Paré, G.; Trudel, M.-C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 2015, 52, 183–199. [Google Scholar] [CrossRef]
- Reim, W.; Parida, V.; Örtqvist, D. Product–Service Systems (PSS) business models and tactics—A systematic literature review. J. Clean. Prod. 2015, 97, 61–75. [Google Scholar] [CrossRef]
- Noordzij, M.; Hooft, L.; Dekker, F.W.; Zoccali, C.; Jager, K.J. Systematic reviews and meta-analyses: When they are useful and when to be careful. Kidney Int. 2009, 76, 1130–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musawir, A.U.; Serra, C.E.M.; Zwikael, O.; Ali, I. Project governance, benefit management, and project success: Towards a framework for supporting organizational strategy implementation. Int. J. Proj. Manag. 2017, 35, 1658–1672. [Google Scholar] [CrossRef]
- Pemsel, S.; Wiewiora, A.; Müller, R.; Aubry, M.; Brown, K. A conceptualization of knowledge governance in project-based organizations. Int. J. Proj. Manag. 2014, 32, 1411–1422. [Google Scholar] [CrossRef]
- Ghosh, S.; Amaya, L.; Skibniewski, M.J. Identifying areas of knowledge governance for successful projects. J. Civ. Eng. Manag. 2012, 18, 495–504. [Google Scholar] [CrossRef]
- Jallow, A.K.; Demian, P.; Baldwin, A.N.; Anumba, C.J. Lifecycle approach to requirements information management in construction projects: State-of-the-art and future trends. In Proceedings of the 24th Annual Conference of Association of Researchers in Construction Management ARCOM, University of Glamorgan, Cardiff, UK, 1–3 September 2008. [Google Scholar]
- Office of Government Commerce. Managing Successful Projects with PRINCE2; The Stationery Office: London, UK, 2009.
- Luo, X.; Shen, Q.; Fan, S. A case-based reasoning system for using functional performance specification in the briefing of building projects. Autom. Constr. 2010, 19, 725–733. [Google Scholar] [CrossRef]
- Samset, K.; Volden, G.H. Front-end definition of projects: Ten paradoxes and some reflections regarding project management and project governance. Int. J. Proj. Manag. 2016, 34, 297–313. [Google Scholar] [CrossRef]
- Pegoraro, C.; de Paula, I.C. Requirements processing for building design: A systematic review. Production 2017, 27. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Ludwig, A.; Franczyk, B. Data security in decentralized cloud systems–system comparison, requirements analysis and organizational levels. J. Cloud Comput. 2017, 6, 15. [Google Scholar] [CrossRef]
- Cavieres, A.; Gentry, T.R.; Al-Haddad, T. Knowledge-based parametric tools for concrete masonry walls: Conceptual design and preliminary structural analysis. Autom. Constr. 2011, 20, 716–728. [Google Scholar] [CrossRef]
- Serugga, J.; Kagioglou, M.; Tzortzopoulos, P. Decision making: Value generation in front end design using quality function and utility theory. In Proceedings of the CIB World Building Congress 2019: Constructing Smart Cities, Hong Kong, China, 17–21 June 2019. [Google Scholar]
- Elf, M.; Malmqvist, I. An audit of the content and quality in briefs for Swedish healthcare spaces. J. Facil. Manag. 2009, 7, 198–211. [Google Scholar] [CrossRef]
- Locatelli, G.; Mancini, M.; Romano, E. Systems Engineering to improve the governance in complex project environments. Int. J. Proj. Manag. 2014, 32, 1395–1410. [Google Scholar] [CrossRef]
- Mota, B.; Biotto, C.; Choudhury, A.; Abley, S.; Kagioglou, M. Lean design management in a major infrastructure project in UK. In Proceedings of the 27th Annual Conference of the International Group for Lean Construction (IGLC), Dublin, Ireland, 1–7 July 2019; pp. 37–48. [Google Scholar]
- Fellows, R.; Liu, A. Sensemaking in the cross-cultural contexts of projects. Int. J. Proj. Manag. 2016, 34, 246–257. [Google Scholar] [CrossRef]
- Drevland, F.O.; Tillmann, P.A. Value for whom? In Proceedings of the 26th Annual Conference of the International Group for Lean Construction, Chennai, India, 16–22 July 2018; pp. 261–270. [Google Scholar]
- Mok, K.Y.; Shen, Q.; Yang, R. Addressing stakeholder complexity and major pitfalls in large cultural building projects. Int. J. Proj. Manag. 2017, 35, 463–478. [Google Scholar] [CrossRef]
- Aragonés-Beltrán, P.; García-Melón, M.; Montesinos-Valera, J. How to assess stakeholders’ influence in project management? A proposal based on the Analytic Network Process. Int. J. Proj. Manag. 2017, 35, 451–462. [Google Scholar] [CrossRef]
- Moodley, K.; Smith, N.; Preece, C.N. Stakeholder matrix for ethical relationships in the construction industry. Constr. Manag. Econ. 2008, 26, 625–632. [Google Scholar] [CrossRef]
- Becker, T.C.; Jaselskis, E.J.; El-Gafy, M. Improving predictability of construction project outcomes through intentional management of indirect construction costs. J. Constr. Eng. Manag. 2014, 140, 04014014. [Google Scholar] [CrossRef]
- Leśniak, A.; Zima, K. Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability 2018, 10, 1608. [Google Scholar] [CrossRef] [Green Version]
- Callegari, C.; Szklo, A.; Schaeffer, R. Cost overruns and delays in energy megaprojects: How big is big enough? Energy Policy 2018, 114, 211–220. [Google Scholar] [CrossRef]
- Garcia-Ceballos, L.; de Andres-Díaz, J.R.; Contreras-Lopez, M.A. Life cycle study of different constructive solutions for building enclosures. Sci. Total Environ. 2018, 626, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Cavka, H.B.; Staub-French, S.; Poirier, E.A. Developing owner information requirements for BIM-enabled project delivery and asset management. Autom. Constr. 2017, 83, 169–183. [Google Scholar] [CrossRef]
- Sousa-Zomer, T.; Cauchick-Miguel, P.A. Proposal of a hotspot-based approach to identifying social impacts along the product-service systems life cycle in the early design phases. Procedia CIRP 2017, 64, 85–90. [Google Scholar] [CrossRef]
- Vezzoli, C.; Ceschin, F.; Diehl, J.C.; Kohtala, C. New design challenges to widely implement ‘Sustainable Product–Service Systems’. J. Clean. Prod. 2015, 97, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jay, I.; Bowen, P. What residents value in low-cost housing schemes: Some South African concepts. Build. Res. Inf. 2011, 39, 574–588. [Google Scholar] [CrossRef]
- Locatelli, G.; Mariani, G.; Sainati, T.; Greco, M. Corruption in public projects and megaprojects: There is an elephant in the room! Int. J. Proj. Manag. 2017, 35, 252–268. [Google Scholar] [CrossRef] [Green Version]
- Kyei, R.O.; Chan, A.P. Developing transport infrastructure in Sub-Saharan Africa through Public–Private Partnerships: Policy practice and implications. Transp. Rev. 2015, 36, 170–186. [Google Scholar] [CrossRef]
- Palm, J.; Reindl, K. Understanding energy efficiency in Swedish residential building renovation: A practice theory approach. Energy Res. Soc. Sci. 2016, 11, 247–255. [Google Scholar] [CrossRef]
- Buyle, M.; Audenaert, A.; Braet, J.; Debacker, W. Towards a more sustainable building stock: Optimizing a Flemish dwelling using a life cycle approach. Buildings 2015, 5, 424–448. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Hebinck, P.; Kaoma, H.; Chishaleshale, M.; Chinyimba, A.; Shackleton, S.; Gambiza, J.; Gumbo, D. Low-cost housing developments in South Africa miss the opportunities for household level urban greening. Land Use Policy 2014, 36, 500–509. [Google Scholar] [CrossRef]
- Thomson, D.; Austin, S.; Mills, G.R.; Devine-Wright, P. Practitioner understanding of value in the UK building sector. Eng. Constr. Arch. Manag. 2013, 20, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 2010, 54, 1155–1166. [Google Scholar] [CrossRef]
- Senescu, R.R.; Haymaker, J.R.; Meža, S.; Fischer, M.A. Design process communication methodology: Improving the effectiveness and efficiency of collaboration, sharing, and understanding. J. Arch. Eng. 2014, 20, 05013001. [Google Scholar] [CrossRef]
- Lin, L.-K.; Chang, C.-C.; Lin, Y.-C. Structure development and performance evaluation of construction knowledge management system. J. Civ. Eng. Manag. 2011, 17, 184–196. [Google Scholar] [CrossRef]
- Thew, S.; Sutcliffe, A. Value-based requirements engineering: Method and experience. Requir. Eng. 2017, 23, 443–464. [Google Scholar] [CrossRef] [Green Version]
- Vernet, N.; Coste, A. garden cities of the 21st century: A sustainable path to suburban reform. Urban Plan. 2017, 2, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Šurlan, N.; Cekic, Z.; Torbica, Z. Use of value management workshops and critical success factors in introducing local experience on the international construction projects. J. Civ. Eng. Manag. 2015, 22, 1021–1031. [Google Scholar] [CrossRef]
- Elf, M.; Engström, M.; Wijk, H. An assessment of briefs used for designing healthcare environments: A survey in Sweden. Constr. Manag. Econ. 2012, 30, 835–844. [Google Scholar] [CrossRef]
- Hsueh, S.-L.; Lee, J.-R.; Chen, Y.-L. DFAHP multicriteria risk assessment model for redeveloping derelict public buildings. Int. J. Strat. Prop. Manag. 2013, 17, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Malekitabar, H.; Ardeshir, A.; Sebt, M.H.; Stouffs, R. Construction safety risk drivers: A BIM approach. Saf. Sci. 2016, 82, 445–455. [Google Scholar] [CrossRef]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Pignataro, M.A.; Lobaccaro, G.; Zani, G. Digital and physical models for the validation of sustainable design strategies. Autom. Constr. 2014, 39, 1–14. [Google Scholar] [CrossRef]
- Sousa-Zomer, T.; Cauchick-Miguel, P.A. A QFD-based approach to support sustainable product-service systems conceptual design. Int. J. Adv. Manuf. Technol. 2016, 88, 701–717. [Google Scholar] [CrossRef]
- De Almeida, N.M.; Sousa, V.; Dias, L.A.; Branco, F. Engineering risk management in performance-based building environments. J. Civ. Eng. Manag. 2015, 21, 218–230. [Google Scholar] [CrossRef]
- Romani, M.A.D.S.; Lahoz, C.H.N.; Yano, E.T. Identifying dependability requirements for space software systems. J. Aerosp. Technol. Manag. 2010, 2, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.; Freire, F. Building retrofit addressing occupancy: An integrated cost and environmental life-cycle analysis. Energy Build. 2017, 140, 388–398. [Google Scholar] [CrossRef]
- Chiu, L.; Lowe, R.; Raslan, R.; Altamirano-Medina, H.; Wingfield, J. A socio-technical approach to post-occupancy evaluation: Interactive adaptability in domestic retrofit. Build. Res. Inf. 2014, 42, 574–590. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Bouchlaghem, D.; Loveday, D.; Law, C. Principal contractor involvement in post-occupancy evaluation in the UK construction industry. Facilities 2013, 31, 39–55. [Google Scholar] [CrossRef]
- Adeyeye, K.; Bouchlaghem, D.; Pasquire, C. A conceptual framework for hybrid building projects. Facilities 2010, 28, 358–370. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Su, J.; Dong, J.W.; Tan, S.K. Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling. J. Clean. Prod. 2018, 179, 12–23. [Google Scholar] [CrossRef]
- Russell-Smith, S.V.; Lepech, M.D. Cradle-to-gate sustainable target value design: Integrating life cycle assessment and construction management for buildings. J. Clean. Prod. 2015, 100, 107–115. [Google Scholar] [CrossRef]
- Himpe, E.; Trappers, L.; Debacker, W.; Delghust, M.; Laverge, J.; Janssens, A.; Moens, J.; Van Holm, M. Life cycle energy analysis of a zero-energy house. Build. Res. Inf. 2013, 41, 435–449. [Google Scholar] [CrossRef]
- Wolter, C.; Meinel, C. An approach to capture authorisation requirements in business processes. Requir. Eng. 2010, 15, 359–373. [Google Scholar] [CrossRef]
- Carrizo, D.; Dieste, O.; Juristo, N. Contextual attributes impacting the effectiveness of requirements elicitation Techniques: Mapping theoretical and empirical research. Inf. Softw. Technol. 2017, 92, 194–221. [Google Scholar] [CrossRef] [Green Version]
- Van De Kar, E.; Hengst, M.D. Involving users early on in the design process: Closing the gap between mobile information services and their users. Electron. Mark. 2008, 19, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Knauss, E.; Yussuf, A.; Blincoe, K.; Damian, D.; Knauss, A. Continuous clarification and emergent requirements flows in open-commercial software ecosystems. Requir. Eng. 2016, 23, 97–117. [Google Scholar] [CrossRef] [Green Version]
- Kruger, C.; Caiado, R.G.G.; França, S.L.B.; Quelhas, O.L.G. A holistic model integrating value co-creation methodologies towards the sustainable development. J. Clean. Prod. 2018, 191, 400–416. [Google Scholar] [CrossRef]
- Serra, C.; Kunc, M. Benefits Realisation Management and its influence on project success and on the execution of business strategies. Int. J. Proj. Manag. 2015, 33, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Boton, C. Supporting constructability analysis meetings with Immersive Virtual Reality-based collaborative BIM 4D simulation. Autom. Constr. 2018, 96, 1–15. [Google Scholar] [CrossRef]
- Śladowski, G. Use of meta-networks to evaluate key agents, knowledge and resources in the planning of construction projects. Arch. Civ. Eng. 2018, 64, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Hu, M. Dynamic life cycle assessment integrating value choice and temporal factors—A case study of an elementary school. Energy Build. 2018, 158, 1087–1096. [Google Scholar] [CrossRef]
- Volk, R.; Luu, T.H.; Mueller-Roemer, J.S.; Sevilmis, N.; Schultmann, F. Deconstruction project planning of existing buildings based on automated acquisition and reconstruction of building information. Autom. Constr. 2018, 91, 226–245. [Google Scholar] [CrossRef]
- Brioso, X.; Humero, A.; Murguia, D.; Corrales, J.; Aranda, J. Using post-occupancy evaluation of housing projects to generate value for municipal governments. Alex. Eng. J. 2018, 57, 885–896. [Google Scholar] [CrossRef]
- Pal, S.K.; Takano, A.; Alanne, K.; Siren, K. A life cycle approach to optimizing carbon footprint and costs of a residential building. Build. Environ. 2017, 123, 146–162. [Google Scholar] [CrossRef]
- Shen, W.; Tang, W.; Siripanan, A.; Lei, Z.; Duffield, C.; Wilson, D.; Hui, F.K.P.; Wei, Y. Critical success factors in Thailand′s green building industry. J. Asian Arch. Build. Eng. 2017, 16, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Roux, C.; Schalbart, P.; Assoumou, E.; Peuportier, B. Integrating climate change and energy mix scenarios in LCA of buildings and districts. Appl. Energy 2016, 184, 619–629. [Google Scholar] [CrossRef]
- Scholl, C.; Kemp, R. City labs as vehicles for innovation in urban planning processes. Urban Plan. 2016, 1, 89. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Zhang, X.; Shen, Q.; Fernando, T. The user pre-occupancy evaluation method in designer–client communication in early design stage: A case study. Autom. Constr. 2013, 32, 112–124. [Google Scholar] [CrossRef]
- Lin, Y.-C. Construction network-based interface management system. Autom. Constr. 2013, 30, 228–241. [Google Scholar] [CrossRef]
- Lu, S.; Hao, G. The influence of owner power in fostering contractor cooperation: Evidence from China. Int. J. Proj. Manag. 2013, 31, 522–531. [Google Scholar] [CrossRef]
- Rezgui, Y.; Beach, T.; Rana, O. A governance approach for BIM management across lifecycle and supply chains using mixed-modes of information delivery. J. Civ. Eng. Manag. 2013, 19, 239–258. [Google Scholar] [CrossRef]
- Abduh, M.; Soemardi, B.W.; Wirahadikusumah, R.D. Indonesian construction supply chains cost structure and factors: A case study of two projects. J. Civ. Eng. Manag. 2012, 18, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.-S.; Hsueh, S.-L.; Wu, W.-C.; Chen, Y.-L. A DFuzzy-DAHP decision-making model for evaluating energy-saving design strategies for residential buildings. Energies 2012, 5, 4462–4480. [Google Scholar] [CrossRef]
- Gasafi, E.; Weil, M. Approach and application of life cycle screening in early phases of process design: Case study of supercritical water gasification. J. Clean. Prod. 2011, 19, 1590–1600. [Google Scholar] [CrossRef]
- Chandra, V.; Loosemore, M. Communicating about organizational culture in the briefing process: Case study of a hospital project. Constr. Manag. Econ. 2011, 29, 223–231. [Google Scholar] [CrossRef]
- Singh, V.; Gu, N.; Wang, X. A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Autom. Constr. 2011, 20, 134–144. [Google Scholar] [CrossRef]
- Yeung, J.F.; Chan, A.P.; Chan, D.W.M. A computerized model for measuring and benchmarking the partnering performance of construction projects. Autom. Constr. 2009, 18, 1099–1113. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Shan, M.; Looi, K.-Y. Key constraints and mitigation strategies for prefabricated prefinished volumetric construction. J. Clean. Prod. 2018, 183, 183–193. [Google Scholar] [CrossRef]
- Hujainah, F.; Abu Bakar, R.; Abdulgabber, M.A.; Zamli, K.Z. Software requirements prioritisation: A systematic literature review on significance, stakeholders, techniques and challenges. IEEE Access 2018, 6, 71497–71523. [Google Scholar] [CrossRef]
- Jansson, G.; Viklund, E.; Olofsson, T. Artistic and engineering design of platform-based production systems: A study of Swedish architectural practice. Buildings 2018, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Chesbrough, H.; Lettl, C.; Ritter, T. Value creation and value capture in open innovation. J. Prod. Innov. Manag. 2018, 35, 930–938. [Google Scholar] [CrossRef] [Green Version]
- Chalhoub, J.; Ayer, S.K. Using Mixed Reality for electrical construction design communication. Autom. Constr. 2018, 86, 1–10. [Google Scholar] [CrossRef]
- Sindhu, J.; Choi, K.; Lavy, S.; Rybkowski, Z.K.; Bigelow, B.F.; Li, W. Effects of front-end planning under fast-tracked project delivery systems for industrial projects. Int. J. Constr. Educ. Res. 2017, 14, 163–178. [Google Scholar] [CrossRef]
- Du, J.; Wu, H.; Zhu, L. Influencing factors on profit distribution of Public-Private partnership projects: Private sector’s perspective. Adv. Civ. Eng. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Du, J.; Wu, H.; Zhao, X. Critical factors on the capital structure of Public–Private partnership projects: A sustainability perspective. Sustainability 2018, 10, 2066. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Leite, F.; Oliveira, D.P. BIM-based benchmarking system for healthcare projects: Feasibility study and functional requirements. Autom. Constr. 2018, 96, 262–279. [Google Scholar] [CrossRef]
- Liao, P.-C.; Liao, J.-Q.; Wu, G.; Wu, C.; Zhang, X.; Ma, M.-C. Comparing international contractors’ CSR communication patterns: A semantic analysis. J. Clean. Prod. 2018, 203, 353–366. [Google Scholar] [CrossRef]
- Eleftheriadis, S.; Duffour, P.; Mumovic, D. Participatory decision-support model in the context of building structural design embedding BIM with QFD. Adv. Eng. Inform. 2018, 38, 695–711. [Google Scholar] [CrossRef]
- Han, X.; Li, R.; Wang, J.; Qin, S.; Ding, G. Identification of key design characteristics for complex product adaptive design. Int. J. Adv. Manuf. Technol. 2017, 95, 1215–1231. [Google Scholar] [CrossRef] [Green Version]
- Abeywickrama, D.B.; Ovaska, E. A survey of autonomic computing methods in digital service ecosystems. Serv. Oriented Comput. Appl. 2016, 11, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Goh, E.; Loosemore, M. The impacts of industrialization on construction subcontractors: A resource based view. Constr. Manag. Econ. 2016, 35, 288–304. [Google Scholar] [CrossRef]
- Koh, E.C. A study on the requirements to support the accurate prediction of engineering change propagation. Syst. Eng. 2017, 20, 147–157. [Google Scholar] [CrossRef]
- Papadonikolaki, E.; Verbraeck, A.; Wamelink, H. Formal and informal relations within BIM-enabled supply chain partnerships. Constr. Manag. Econ. 2017, 35, 531–552. [Google Scholar] [CrossRef] [Green Version]
- Akcay, E.C.; Dikmen, I.; Birgonul, M.T.; Arditi, D. Estimating the profitability of hydropower investments with a case study from Turkey. J. Civ. Eng. Manag. 2017, 23, 1002–1012. [Google Scholar] [CrossRef] [Green Version]
- Sinesilassie, E.G.; Tabish, S.Z.S.; Jha, K.N. Critical factors affecting schedule performance. Eng. Constr. Arch. Manag. 2017, 24, 757–773. [Google Scholar] [CrossRef]
- Lin, H.; Zeng, S.; Ma, H.; Zeng, R.; Tam, V.W. An indicator system for evaluating megaproject social responsibility. Int. J. Proj. Manag. 2017, 35, 1415–1426. [Google Scholar] [CrossRef]
- Sleiman, H.A.; Hempel, S.; Traversari, R.; Bruinenberg, S. An assisted workflow for the early design of nearly zero emission healthcare buildings. Energies 2017, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, I.; Voordijk, H.; Dewulf, G. Beyond theory: Towards a probabilistic causation model to support project governance in infrastructure projects. Int. J. Proj. Manag. 2017, 35, 432–450. [Google Scholar] [CrossRef]
- Wiese, I.; Ré, R.; Wiese, I.; Kuroda, R.T.; Oliva, G.A.; Treude, C.; Gerosa, M. Using contextual information to predict co-changes. J. Syst. Softw. 2017, 128, 220–235. [Google Scholar] [CrossRef]
- Hastie, J.; Sutrisna, M.; Egbu, C. Modelling knowledge integration process in early contractor involvement procurement at tender stage–A Western Australian case study. Constr. Innov. 2017, 17, 429–456. [Google Scholar] [CrossRef]
- Sanderson, J.; Winch, G. Public policy and projects. Int. J. Proj. Manag. 2017, 35, 221–223. [Google Scholar] [CrossRef]
- Samset, K. Systems engineering in front-end governance of major public investment projects. Systems 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total. Environ. 2017, 607, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Saoud, L.A.; Omran, J.; Hassan, B.; Vilutiene, T.; Kiaulakis, A. A method to predict change propagation within building information model. J. Civ. Eng. Manag. 2017, 23, 836–846. [Google Scholar] [CrossRef]
- Clarke, L.; Gleeson, C.; Winch, C. What kind of expertise is needed for low energy construction? Constr. Manag. Econ. 2016, 35, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Oraee, M.; Hosseini, M.R.; Namini, S.B.; Merschbrock, C. Where the gaps lie: Ten years of research into collaboration on BIM-enabled construction projects. Constr. Econ. Build. 2017, 17, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Buchmann, R.A.; Karagiannis, D. Modelling mobile app requirements for semantic traceability. Requir. Eng. 2015, 22, 41–75. [Google Scholar] [CrossRef]
- Shin, S.; Jeong, S.; Lee, J.; Hong, S.W.; Jung, S. Pre-Occupancy Evaluation based on user behavior prediction in 3D virtual simulation. Autom. Constr. 2017, 74, 55–65. [Google Scholar] [CrossRef]
- Revellino, S.; Mouritsen, J. Knotting the net: From ‘design by deception’ to an object oriented politics. Int. J. Proj. Manag. 2017, 35, 296–306. [Google Scholar] [CrossRef]
- Rowlinson, S. Building information modelling, integrated project delivery and all that. Constr. Innov. 2017, 17, 45–49. [Google Scholar] [CrossRef]
- Heikkilä, V.T.; Paasivaara, M.; Lasssenius, C.; Damian, D.; Engblom, C. Managing the requirements flow from strategy to release in large-scale agile development: A case study at Ericsson. Empir. Softw. Eng. 2017, 22, 2892–2936. [Google Scholar] [CrossRef] [Green Version]
- Galle, W.; De Temmerman, N.; De Meyer, R. Integrating scenarios into life cycle assessment: Understanding the value and financial feasibility of a demountable building. Buildings 2017, 7, 64. [Google Scholar] [CrossRef]
- Dias, W.P.S.; Chandratilake, S.; Ofori, G. Dependencies among environmental performance indicators for buildings and their implications. Build. Environ. 2017, 123, 101–108. [Google Scholar] [CrossRef]
- Kpamma, Z.; Adjei-Kumi, T.; Ayarkwa, J.; Adinyira, E. Participatory design, wicked problems, choosing by advantages. J. Eng. Constr. Arch. Manag. 2017, 24, 289–307. [Google Scholar] [CrossRef]
- Hollberg, A.; Ruth, J. LCA in architectural design—A parametric approach. Int. J. Life Cycle Assess. 2016, 21, 943–960. [Google Scholar] [CrossRef] [Green Version]
- Del Caño, A.; de la Cruz, M.P.; Gómez, D.; Pérez, M. Fuzzy method for analysing uncertainty in the sustainable design of concrete structures. J. Civ. Eng. Manag. 2016, 22, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Haddadi, A.; Johansen, A.; Andersen, B. A Conceptual framework to enhance value creation in construction projects. Procedia Comput. Sci. 2016, 100, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.; Brady, T. Explicating the dynamics of project capabilities. Int. J. Proj. Manag. 2016, 34, 314–327. [Google Scholar] [CrossRef]
- Immonen, A.; Ovaska, E.; Kalaoja, J.; Pakkala, D. A service requirements engineering method for a digital service ecosystem. Serv. Oriented Comput. Appl. 2015, 10, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.N.; Jensen, R.L.; Larsen, T.S.; Nissen, S.B. Early stage decision support for sustainable building renovation—A review. Build. Environ. 2016, 103, 165–181. [Google Scholar] [CrossRef]
- Jussila, A.; Mainela, T.; Nätti, S. Formation of strategic networks under high uncertainty of a megaproject. J. Bus. Ind. Mark. 2016, 31, 575–586. [Google Scholar] [CrossRef]
- Dave, B.; Kubler, S.; Främling, K.; Koskela, L. Opportunities for enhanced lean construction management using Internet of Things standards. Autom. Constr. 2016, 61, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Delmastro, C.; Mutani, G.; Corgnati, S.P. A supporting method for selecting cost-optimal energy retrofit policies for residential buildings at the urban scale. Energy Policy 2016, 99, 42–56. [Google Scholar] [CrossRef]
- Addison, C.; Jenkins, B.W.C.; Odom, D.; Fortenberry, M.; Wilson, G.; Young, L.; Antoine-LaVigne, D. Building collaborative health promotion partnerships: The jackson heart study. Int. J. Environ. Res. Public Health 2015, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Bacciotti, D.; Maccioni, L.; Cascini, G.; Rotini, F. Product planning techniques: Investigating the differences between research trajectories and industry expectations. Res. Eng. Des. 2016, 27, 367–389. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.-H.; Liu, M.; Skibniewski, M.J.; Balali, V. Conflict and consensus in stakeholder attitudes toward sustainable transport projects in China: An empirical investigation. Habitat Int. 2016, 53, 473–484. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, M.; Rodrigues, A. Cost-optimal energy efficiency levels are the first step in achieving cost effective renovation in residential buildings with a nearly-zero energy target. Energy Build. 2016, 133, 724–737. [Google Scholar] [CrossRef]
- Müller, R.; Zhai, L.; Wang, A.; Shao, J. A framework for governance of projects: Governmentality, governance structure and projectification. Int. J. Proj. Manag. 2016, 34, 957–969. [Google Scholar] [CrossRef]
- Dias, R.; Cabral, A.S.; Lopez, B.; Belderrain, M.C.N. The use of cognitive maps for requirements elicitation in product development. J. Aerosp. Technol. Manag. 2016, 8, 178–192. [Google Scholar] [CrossRef]
- Bayram, S.; Ocal, M.E.; Oral, E.L.; Atis, C. Comparison of multi layer perceptron (mlp) and radial basis function (rbf) for construction cost estimation: The case of Turkey. J. Civ. Eng. Manag. 2015, 22, 480–490. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, Y.; Teissandier, D.; Sebastian, P. Global optimisation of functional requirements and tolerance allocations based on designer preference modelling. J. Eng. Des. 2016, 27, 591–612. [Google Scholar] [CrossRef]
- Hoła, B.; Sawicki, M.; Skibniewski, M.J. An IT model of a knowledge map which supports management in small and medium-sized companies using selected polish construction enterprises as an example. J. Civ. Eng. Manag. 2015, 21, 1014–1026. [Google Scholar] [CrossRef] [Green Version]
- Plewa, C.; Sweeney, J.; Michayluk, D. Determining value in a complex service setting. J. Serv. Theory Pr. 2015, 25, 568–591. [Google Scholar] [CrossRef]
- Lung, C.-H.; Balasubramaniam, B.; Selvarajah, K.; Elankeswaran, P.; Gopalasundaram, U. On building architecture-centric product line architecture. Requir. Eng. 2014, 20, 301–321. [Google Scholar] [CrossRef]
- Dagan, D.; Isaac, S. Planning safe distances between workers on construction sites. Autom. Constr. 2015, 50, 64–71. [Google Scholar] [CrossRef]
- Koh, E.C.; Förg, A.; Kreimeyer, M.; Lienkamp, M. Using engineering change forecast to prioritise component modularisation. Res. Eng. Des. 2015, 26, 337–353. [Google Scholar] [CrossRef]
- Li, H.; Arditi, D.; Wang, Z. Determinants of transaction costs in construction projects. J. Civ. Eng. Manag. 2015, 21, 548–558. [Google Scholar] [CrossRef]
- Singhaputtangkul, N.; Low, S.P. Modeling a decision support tool for buildable and sustainable building envelope designs. Buildings 2015, 5, 521–535. [Google Scholar] [CrossRef]
- Jung, Y.; Moon, B.-S.; Kim, Y.-M.; Kim, W. Integrated cost and schedule control systems for nuclear power plant construction: Leveraging strategic advantages to owners and EPC firms. Sci. Technol. Nucl. Install. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Shan, K. Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings. Appl. Energy 2015, 155, 463–477. [Google Scholar] [CrossRef]
- Too, E.; Weaver, P. The management of project management: A conceptual framework for project governance. Int. J. Proj. Manag. 2014, 32, 1382–1394. [Google Scholar] [CrossRef]
- Tserng, H.-P.; Ho, S.-P.; Jan, S.-H. Developing bim-assisted as-built schedule management system for general contractors. J. Civ. Eng. Manag. 2014, 20, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.K.W.; Kumaraswamy, M.; Mahesh, G.; Ling, F.Y.Y. Building integrated project and asset management teams for sustainable built infrastructure development. J. Facil. Manag. 2014, 12, 187–210. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- De Schepper, S.; Dooms, M.; Haezendonck, E. Stakeholder dynamics and responsibilities in Public–Private Partnerships: A mixed experience. Int. J. Proj. Manag. 2014, 32, 1210–1222. [Google Scholar] [CrossRef]
- Hellström, M.; Ruuska, I.; Wikström, K.; Jåfs, D. Project governance and path creation in the early stages of Finnish nuclear power projects. Int. J. Proj. Manag. 2013, 31, 712–723. [Google Scholar] [CrossRef]
- Im, S.; Montoya, M.M.; Workman, J.P. Antecedents and consequences of creativity in product innovation teams. J. Prod. Innov. Manag. 2012, 30, 170–185. [Google Scholar] [CrossRef]
- Belkadi, F.; Dremont, N.; Notin, A.; Troussier, N.; Messadia, M. A meta-modelling framework for knowledge consistency in collaborative design. Annu. Rev. Control. 2012, 36, 346–358. [Google Scholar] [CrossRef]
- Sanderson, J. Risk, uncertainty and governance in megaprojects: A critical discussion of alternative explanations. Int. J. Proj. Manag. 2012, 30, 432–443. [Google Scholar] [CrossRef]
- Tang, L.; Shen, Q.; Skitmore, M.; Cheng, E.W.; Skitmore, M. Ranked critical factors in PPP briefings. J. Manag. Eng. 2013, 29, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Hopfe, C.J.; Hensen, J.L. Uncertainty analysis in building performance simulation for design support. Energy Build. 2011, 43, 2798–2805. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Shen, Q.; Ho, C.M.; Drew, D.S.; Xue, X. Stakeholder management in construction: An empirical study to address research gaps in previous studies. Int. J. Proj. Manag. 2011, 29, 900–910. [Google Scholar] [CrossRef]
- Leckner, M.; Zmeureanu, R. Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem. Appl. Energy 2011, 88, 232–241. [Google Scholar] [CrossRef]
- Baalousha, Y.; Çelik, T. An integrated web-based data warehouse and artificial neural networks system for unit price analysis with inflation adjustment. J. Civ. Eng. Manag. 2011, 17, 157–167. [Google Scholar] [CrossRef]
- Gu, N.; London, K. Understanding and facilitating BIM adoption in the AEC industry. Autom. Constr. 2010, 19, 988–999. [Google Scholar] [CrossRef]
- De Almeida, N.M.; Sousa, V.; Dias, L.; Branco, F. A framework for combining risk-management and performance-based building approaches. Build. Res. Inf. 2010, 38, 157–174. [Google Scholar] [CrossRef]
- Razavi, S.; Haas, C.T. Multisensor data fusion for on-site materials tracking in construction. Autom. Constr. 2010, 19, 1037–1046. [Google Scholar] [CrossRef]
- Chung, J.K.; Kumaraswamy, M.; Palaneeswaran, E.; Chung, K.H.J. Improving megaproject briefing through enhanced collaboration with ICT. Autom. Constr. 2009, 18, 966–974. [Google Scholar] [CrossRef]
- Ross, A.M.; Rhodes, D.H.; Hastings, D.E. Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value. Syst. Eng. 2008, 11, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.T.W.; Shen, Q.; Kelly, J.; Hunter, K. Comparative study of the variables in Construction Project Briefing/Architectural Programming. J. Constr. Eng. Manag. 2008, 134, 122–138. [Google Scholar] [CrossRef]
- Agouridas, V.; McKay, A.; Winand, H.; De Pennington, A. Advanced product planning: A comprehensive process for systemic definition of new product requirements. Requir. Eng. 2007, 13, 19–48. [Google Scholar] [CrossRef]
Criterion | Grade Criteria | Grade |
---|---|---|
C1—Clarity of aims and objectives | (1, 0.5, 0) (Yes, Nominally, No) | 151 Studies, 94% |
C2—Focus and context of research | (1, 0.5, 0) (Yes, Nominally, No) | 150 Studies, 93% |
C3—Clarity in research findings | (1, 0.5, 0) (Yes, Nominally, No) | 153 Studies, 95% |
C4—validity and rigour of research | (1, 0.5, 0) (Yes, Nominally, No) | 151 Studies, 94% |
Authors | Concept | Definition |
---|---|---|
Pemsel, Wiewiora [41] | Governance | A set of relationships between stakeholders and the distribution of rights and responsibilities among these various stakeholders |
Ghosh, Amaya [42] | Knowledge Management | The control of the organisational problem solution and adaptation capacity through a goal-directed development and utilisation of the organisational knowledge base |
Jallow, Demian [43], The Office of Government [44] | Requirements Management | The process of elicitation, documentation, organisation and tracking requirements information and communicating across the various stakeholders and project teams as RM. |
Xiaochun Luo, Shen [45] | Functional Performance | A structured requirement analysis process, in which client requirements are firstly defined with functions and relevant evaluation criteria |
Value Management | Defining what ‘value’ means to a client within a particular context by bring the project stakeholders together and producing a clear statement of the project’s objectives | |
Samset and Volden [46] | Project Governance | The processes, systems, and regulations that the financing party must have in place to ensure that projects are successful |
ul Musawir, Serra [40] | Benefit | A flow of value that occurs when customers use project outputs |
Benefits Realisation Management | A set of processes that ensure that projects, programs, and portfolios embed the requirements of business strategies into business-as-usual, in order to create value in a meaningful and sustainable manner | |
Pegoraro and Paula [47] | Requirement | A statement that prescribes features that a product or service must have to satisfy demands or to achieve project stakeholders’ goals |
Design Solution | decision or action is chosen to meet the design requirements, which must be limited by the specifications |
Author | Category | Research Questions/Goals |
---|---|---|
Cavka, Staub-French [63] | Technical, Economics, Governance, Environment, Health and Safety, Life Cycle Performance | A study to understand and facilitate processes of developing and formulating Building Information Modelling (BIM) requirements to support the lifecycle of their assets through an iterative approach to the identification and characterisation of owner requirements |
Sousa-Zomer and Cauchick-Miguel [64] | Governance, Environmental, Technical, Health and Safety, Life Cycle Performance | The study investigating Product Service System (PSS) applied to sustainable design during conceptual design |
Locatelli, Mariani [67] | Economics, Technical, Geopolitics, Governance, Sociocultural | A study into new ways to select, plan and deliver infrastructure in corrupt project contexts |
Mok, Shen [56] | Governance, Economics, Technical, Sociocultural | An investigation of stakeholder complexity and understanding how major pitfalls in cultural building projects from a stakeholder perspective are crucial to the successful management of these projects |
Osei–Kyei and Chan [68] | Economics, Governance, Geopolitics, Technical, Occupancy | A study into the success and failure factors of Public-Private Partnership Transport Infrastructure in Sub-Saharan Africa |
Palm and Reindl [69] | Environment, Economics, Geopolitics, Life Cycle Performance | A study into renovation processes for reduced energy consumption in front end design |
Vezzoli, Ceschin [65] | Environment, Economics, Geopolitics, Sociocultural, Technical, Governance, Health and Safety, Occupancy | A state of the art look into user satisfaction and acceptance of Sustainable Product-Service Systems solutions and how industrial partnerships and stakeholder interactions can be designed for environmental and socio-ethical benefits, socio-technical change and transition management |
Buyle, Audenaert [70] | Environment, Economics, Geopolitics, Governance | An investigation into scenarios to improve the environmental profile of new buildings in the Flemish/Belgian context |
Shackleton, Hebinck [71] | Occupancy, Economics, Technical, Environment, Geopolitics, Life Cycle Costs | A study into how policy can foster urban forestry and greening through a regime of maintenance, use and appreciation of trees on private homesteads of residents of new and older low-income suburbs as well as informal housing areas |
Thomson, Austin [72] | Technical, Economic, Environmental, Lifecycle Performance, Governance | Examining the construction practitioners’ collective cognition of value to determine how their facilitation may bias this intent. |
Jay and Bowen [66] | Technical, Economics, Environment, Health and Safety, Sociocultural, Occupancy | A study of social housing value perceptions in South Africa |
Moodley, Smith [58] | Sociocultural, Health and Safety, Economics, Governance | A study into ethics of construction practices including exploration of social contracts and corporate responsibility |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serugga, J.; Kagioglou, M.; Tzortzopoulos, P. Front End Projects Benefits Realisation from a Requirements Management Perspective—A Systematic Literature Review. Buildings 2020, 10, 83. https://doi.org/10.3390/buildings10050083
Serugga J, Kagioglou M, Tzortzopoulos P. Front End Projects Benefits Realisation from a Requirements Management Perspective—A Systematic Literature Review. Buildings. 2020; 10(5):83. https://doi.org/10.3390/buildings10050083
Chicago/Turabian StyleSerugga, Joas, Mike Kagioglou, and Patricia Tzortzopoulos. 2020. "Front End Projects Benefits Realisation from a Requirements Management Perspective—A Systematic Literature Review" Buildings 10, no. 5: 83. https://doi.org/10.3390/buildings10050083
APA StyleSerugga, J., Kagioglou, M., & Tzortzopoulos, P. (2020). Front End Projects Benefits Realisation from a Requirements Management Perspective—A Systematic Literature Review. Buildings, 10(5), 83. https://doi.org/10.3390/buildings10050083