The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar Containing By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Constituent Materials
2.1.1. Cement
2.1.2. Dolomite Sand
2.1.3. Waste Limestone
2.1.4. Fly Ash
2.1.5. Crystalline Admixture
2.1.6. Ethylene-Vinyl Acetate Copolymer (EVA)
2.1.7. Cellulose Ether
2.1.8. Superplasticizer
2.2. Verified Mix Designs
2.3. Test Methodology
2.3.1. Density, Compressive and Flexural Strength
2.3.2. Dynamic Modulus of Elasticity
2.3.3. Permeable Porosity
2.3.4. Capillary Suction
2.3.5. Chloride Migration Coefficient
2.3.6. Rapid Chloride Penetration Test (RCPT)
2.3.7. Helium Pycnometer Absolute Density Test
2.3.8. Microstructure Analysis (SEM, XRD)
3. Results and Discussion
3.1. Compressive and Flexural Strength
3.2. Dynamic Modulus of Elasticity
3.3. Permeable Porosity
3.4. Capillary Suction
3.5. Chloride Migration Coefficient
3.6. Rapid Chloride Penetration Test (RCPT)
3.7. Helium Pycnometer Absolute Density Test
3.8. Microstructure Analysis (SEM, XRD)
3.8.1. Scanning Electron Microscopy (SEM)
3.8.2. X-Ray Diffraction (XRD)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bensted, J.; Rbrough, A.; Page, M.M. Chemical degradation of concrete. In Durability of Concrete and Cement Composites; Page, C.L., Page, M.M., Eds.; WoodHead Publishing: Cambridge, UK, 2007; pp. 86–135. [Google Scholar]
- Ministerio de Fomento. EHE-08-Code on Structural Concrete. Articles and Annexes; Ministerio de Fomento: Madrid, Spain, 2008. [Google Scholar]
- Herbert, E.N.; Li, V.C. Self-healing of microcracks in Engineered Cementitious Composites (ECC) under a natural environment. Materials 2013, 6, 2831–2845. [Google Scholar] [CrossRef] [PubMed]
- Rahhal, V.; Bonnavetti, V.; Trusilewicz, L.; Pedrajas, C.; Talero, R. Role of the filler on Portland cement hydration at early ages. Constr. Build. Mater. 2011, 27, 82–90. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar] [CrossRef]
- Reiterman, P.; Davidová, V.; Pazderka, J.; Kubissa, W. Reduction of concrete surface permeability by using crystalline treatment. Rev. Română Mater. Rom. J. Mater. 2020, 50, 69–74. [Google Scholar]
- Reiterman, P.; Bäumelt, V. Long-term sorption properties of mortars modified by crystallizing admixture. Adv. Mater. Res. 2014, 1054, 71–74. [Google Scholar] [CrossRef]
- Borg, R.P.; Cuenca, E.; Brac, E.M.G.; Ferrara, L. Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. J. Sustain. Cem. Based Mater. 2017, 7, 141–159. [Google Scholar] [CrossRef]
- Naik, T.R. Concrete Durability as Influenced by Density and/or Porosity; CBU-1997-27; Cement and Concrete Institute of Mexico Symposium “World of Concrete—Mexico”: Guadalajara, Mexico, 1997. [Google Scholar]
- Zingg, L.; Briffaut, M.; Baroth, J.; Malecot, Y. Influence of cement matrix porosity on the triaxial behaviour of concrete. Cem. Concr. Res. 2016, 80, 52–59. [Google Scholar] [CrossRef]
- Zhao, H.; Xiao, Q.; Huang, D.; Zhang, S. Influence of pore structure on compressive strength of cement mortar. Sci. World J. 2014, 5, 247058. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Bhattacharjee, B. Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 2003, 33, 155–164. [Google Scholar] [CrossRef]
- Roig-Flores, M.; Pirritano, F.; Serna, P.; Ferrara, L. Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 2016, 114, 447–457. [Google Scholar] [CrossRef]
- ACI Committee 212. Report on Chemical Admixtures for Concrete; Report ACI 212-3R-10; Concrete Institute (ACI): Farmington Hills, MI, USA, 2010; Volume 15, pp. 46–50.
- Bijen, J. Benefits of slag and fly ash. Constr. Build. Mater. 1996, 10, 309–314. [Google Scholar] [CrossRef]
- Pastor, J.L.; Ortega, J.M.; Flor, M.; López, M.P.; Sánchez, I.; Climent, M.A. Microstructure and durability of fly ash cement grouts for micropiles. Constr. Build. Mater. 2016, 117, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Esteban, M.D.; Rodríguez, R.R.; Pastor, J.L.; Ibanco, F.J.; Sánchez, I.; Climent, M.A. Long-term behaviour of fly ash and slag cement grouts for micropiles exposed to a sulphate aggressive Medium. Materials 2017, 10, 598. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.J.; Dhir, R. Development of high volume fly ash cements for use in concrete construction. Fuel 2005, 84, 1423–1432. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D.; Sánchez, I.; Climent, M.Á. Performance of sustainable fly ash and slag cement mortars exposed to simulated and real in situ Mediterranean conditions along 90 warm season days. Materials 2017, 10, 1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, R.P. Sustainable Concrete: Application of Waste Materials in Concrete and Self Compacting Concrete. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2014. [Google Scholar]
- Žižková, N.; Hodul, J.; Borg, R.P.; Černý, V. Repair mortars containing fly ash and crystalline admixture. Waste Forum 2019, 3, 254–266. [Google Scholar]
- The European Parliament and the Council of the European Union. Requirements for Construction Products Bearing the CE Marking in Accordance with Regulation (EU); No. 305/2011; The Construction Products, Official Journal of the European Union; European Union: Brussels, Belgium, 2011.
- García-Vera, V.E.; Tenza-Abril, A.J.; Saval, M.; Lanzón, M. Influence of crystalline admixtures on the short-term behaviour of mortars exposed to sulphuric acid. Materials 2019, 12, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.L.; Hu, T.Z.; Xu, S.J. Influence of permeated crystalline waterproof materials on impermeability of concrete. Adv. Mater. Res. 2012, 446–449, 954–960. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Niu, M.; Liu, Q.; Yang, X.; Deng, M. Effect of granulated blast furnace slag on the self-healing capability of mortar incorporating crystalline admixture. Constr. Build. Mater. 2020, 239, 117818. [Google Scholar] [CrossRef]
- Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Gibas, K.; Dąbrowski, M. Influence of blended cements with calcareous fly ash on chloride ion migration and carbonation resistance of concrete for durable structures. Materials 2016, 9, 18. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R.; Biparva, A. Inventive microstructural and durability investigation of cementitious composites involving crystalline waterproofing admixtures and portland limestone cement. Materials 2020, 13, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunther, W.; Lothenbach, B.; Skibsted, J. Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cem. Concr. Res. 2015, 69, 37–49. [Google Scholar] [CrossRef]
- Reddy, T.C.S.; Ravitheja, A.; Sashidhar, C. Self-healing ability of high-strength fibre-reinforced concrete with fly ash and crystalline admixture. Civ. Eng. J. 2018, 4, 971–979. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Kang, S.H.; Hong, S.G.; Moon, J. Acceleration of intended pozzolanic reaction under initial thermal treatment for developing cementless fly ash based mortar. Materials 2017, 10, 225. [Google Scholar] [CrossRef] [Green Version]
Input Materials | REF | WL20-CA | FA20-CA |
---|---|---|---|
Cement CEM I 52.5 N | 601.5 | 473.5 | 473.5 |
Fly ash | - | - | 120.3 |
Waste Limestone | - | 120.3 | |
Dolomite sand | 1310.3 | 1302.2 | 1300.3 |
Ethylene-vinyl acetate copolymer | 6.0 | 6.0 | 6.0 |
Cellulose ether | 5.0 | 5.0 | 5.0 |
Crystalline admixture | - | 8.0 | 8.0 |
Superplasticizer | 15.3 | 15.3 | 15.8 |
Water | 261.9 | 261.9 | 271.4 |
W/C ratio 1 | 0.4 | 0.4 | 0.4 |
Charge Passed [C] | Chloride Ion Penetrability (CIP) |
---|---|
>4000 | High |
2000–4000 | Moderate |
1000–2000 | Low |
100–1000 | Very Low |
<100 | Negligible |
Capillary Suction | Unit | REF | WL20-CA | FA20-CA |
---|---|---|---|---|
Effective Porosity (εe) | cm3/cm3 | 0.507 | 0.474 | 0.300 |
Capillary Suction Coefficient (K) | kg/m2min0.5 | 0.000152 | 0.000144 | 0.000112 |
Chloride Migration Coefficient | REF | WL20-CA | FA20-CA |
---|---|---|---|
Dnssm × 10−12 (m2/s) | 8.45 | 6.68 | 1.53 |
Mixture | Qs [C] | CIP |
---|---|---|
REF | 3115 | Moderate |
WL20-CA | 3072 | Moderate |
FA20-CA | 625 | Very Low |
Sample | Pore Volume (Vp) (cm3) | Standard Deviation σ Vp (cm3) | Absolute Density (ρab) (g/cm3) | Standard Deviation σ ρab (g/cm3) |
---|---|---|---|---|
REF | 0.204 | 0.001 | 2.503 | 0.008 |
WL20-CA | 0.335 | 0.002 | 2.458 | 0.012 |
FA20-CA | 0.313 | 0.001 | 2.472 | 0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodul, J.; Žižková, N.; Borg, R.P. The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar Containing By-Products. Buildings 2020, 10, 146. https://doi.org/10.3390/buildings10090146
Hodul J, Žižková N, Borg RP. The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar Containing By-Products. Buildings. 2020; 10(9):146. https://doi.org/10.3390/buildings10090146
Chicago/Turabian StyleHodul, Jakub, Nikol Žižková, and Ruben Paul Borg. 2020. "The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar Containing By-Products" Buildings 10, no. 9: 146. https://doi.org/10.3390/buildings10090146
APA StyleHodul, J., Žižková, N., & Borg, R. P. (2020). The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar Containing By-Products. Buildings, 10(9), 146. https://doi.org/10.3390/buildings10090146