Seismic Vulnerability of Sub-Structures: Vantitelli’s Modulus in Murena Palace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Historical Background and Surveys
2.1.1. Genesis of Vanvitelli’s Modulus
2.2. Actual State and Experimental Testing Campaign
- Only the presence of brick masonry and lime mortar has been observed, the presence of cavities or different materials in the wall’s core is not shown;
- The masonry vaults result with the same materials, also regarding the composition of their springers;
- No metal anchors and tie rods have been applied to this portion of the structure;
- Double space volume made by a mezzanine floor, over the ground floor, fitting the height of the side corridor;
- Presence of bearing walls, built without a direct path to the ground, which transfer the loads directly to the underlying masonry vaults;
- Inner architectural-structural subdivision of the mezzanine floor in rooms with one or two stories directly neighboring each other;
- Horizontal structures made of vaults of different typology and geometry.
3. Geometrical-Mechanical Modeling and Structural Analysis
3.1. Parametric Modeling
3.2. Structural Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liberotti, R.; Cluni, F.; Gusella, V. Vulnerability and seismic improvement of architectural heritage: The case of Palazzo Murena. Earthq. Struct. 2020, 18, 321–335. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Galasco, A.; Penna, A. Nonlinear macro-element dynamic analysis of masonry buildings. In Proceedings of the Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 13–15 June 2007. [Google Scholar]
- Penna, A.; Lagomarsino, S.; Galasco, A. A nonlinear macroelement model for the seismic analysis of masonry buildings. Earthq. Eng. Struct. Dyn. 2013, 43, 159–179. [Google Scholar] [CrossRef]
- NTC Decreto Ministeriale 14 Gennaio 2018. Aggiornamento Delle «Norme tecniche Per Le Costruzioni». Supplemento Ordinario Alla “Gazzetta Ufficiale”; N. 42 Del 20 Febbraio 2018—Serie Generale; Ministero Delle Infrastrutture E Dei Trasporti: Roma, Italy, 2018. [Google Scholar]
- Circ. No7 Circolare Del Ministero Delle Infrastrutture E Dei Trasporti 21 Gennaio 2019, N. 7. C.S.LL.PP., Istruzioni Per L’Applicazione Dell’ «Aggiornamento Delle “Norme Tecniche Per Le Costruzioni”» Di Cui Al Decreto Ministeriale 17 Gennaio 2018; Supplemento Ordinario Alla “Gazzetta Ufficiale” N. 35 Del 11 Febbraio 2019—Serie Generale; Ministero Delle Infrastrutture E Dei Trasporti: Roma, Italy, 2019. [Google Scholar]
- D’Ayala, D.; Speranza, E. Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthq. Spectra 2003, 19, 479–509. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Damage assessment and partial failure mechanisms activation of historical masonry churches under seismic actions: Three case studies in Mantua. Eng. Fail. Anal. 2018, 92, 495–519. [Google Scholar] [CrossRef]
- Sorignani, C. UNI|TECA Progetto Architettonico di Trasformazione in Gipsoteca Dell’edificio Sede Dell’ufficio Economato Dell’università Degli Studi di Perugia. Master’s Thesis, University of Perugia, Perugia, Italy, 2018. [Google Scholar]
- Cavalagli, N.; Gusella, V.; Severini, L. The safety of masonry arches with uncertain geometry. Comput. Struct. 2017, 188, 17–31. [Google Scholar] [CrossRef]
- Gioffrè, M.; Gusella, V.; Cluni, F. Performance evaluation of monumental bridges: Testing and monitoring ‘Ponte delle Torri’ in Spoleto. Struct. Infrastruct. Eng. 2008, 4, 95–106. [Google Scholar] [CrossRef]
- Cavalagli, N.; Cluni, F.; Gusella, V. Failure surface of quasi-periodic masonry by means of statistically equivalent periodic unit cell approach. Meccanica 2017, 53, 1719–1736. [Google Scholar] [CrossRef] [Green Version]
- Liberotti, R. Modellazione Parametrica Geometrico-Strutturale di Volte a Crociera in Muratura. Master’s Thesis, University of Perugia, Perugia, Italy, 2018. [Google Scholar]
- Issa, R.R.A. Advanced construction information modeling: Technology integration and education. In Haptics: Science, Technology, Applications; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 311–335. [Google Scholar]
- Melachos, F.; Florio, W.; Rossato, L.; Balzani, M. Parametrical analysis and digital fabrication of thin shell structures: The impact of construction technique on the resulting geometry of the gaussian vaults of eladio dieste. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, 42, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Cavalagli, N.; Gusella, V.; Severini, L. Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches. Int. J. Mech. Sci. 2016, 115, 645–656. [Google Scholar] [CrossRef]
- Cavalagli, N.; Gusella, V.; Liberotti, R. The role of shape irregularities on the lateral loads bearing capacity of circular masonry arches. In Proceedings of the XXIV AIMETA Conference 2019, Rome, Italy, 15–19 September 2019; pp. 2069–2081. [Google Scholar]
- Severini, L.; Cavalagli, N.; DeJong, M.; Gusella, V. Dynamic response of masonry arch with geometrical irregularities subjected to a pulse-type ground motion. Nonlinear Dyn. 2017, 91, 609–624. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, P.; Cavalagli, N.; Gusella, V.; Pellegrino, C. Collapse displacements of masonry arch with geometrical uncertainties on spreading supports. Comput. Struct. 2018, 208, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Angjeliu, G.; Cardani, G.; Coronelli, D. A parametric model for ribbed masonry vaults. Autom. Constr. 2019, 105, 102785. [Google Scholar] [CrossRef]
- Di Paola, F.; Mercurio, A. Design and digital fabrication of a parametric joint for bamboo sustainable structures. Adv. Intell. Syst. Comput. 2019, 975, 180–189. [Google Scholar] [CrossRef]
- Peng, T.; Wang, X.; Shi, X. Generative design method of the facade of traditional architecture and settlement based on knowledge discovery and digital generation: A case study of Gunanjie Street in China. Int. J. Arch. Herit. 2018, 13, 679–690. [Google Scholar] [CrossRef]
- Dassault Systèmes. Abaqus 6.13 Abaqus/CAE User’s Guide. Available online: http://130.149.89.49:2080/v6.13/pdf_books/CAE.pdf (accessed on 5 July 2020).
- Betti, M.; Galano, L. Seismic analysis of historic masonry buildings: The vicarious palace in Pescia (Italy). Buildings 2012, 2, 63–82. [Google Scholar] [CrossRef]
- Ceroni, F.; Pecce, M.R.; Sica, S.; Garofano, A. Assessment of seismic vulnerability of a historical masonry building. Buildings 2012, 2, 332–358. [Google Scholar] [CrossRef]
- Cardani, G.; Belluco, P. Reducing the loss of built heritage in seismic areas. Buildings 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Creazza, G.; Matteazzi, R.; Saetta, A.; Vitaliani, R. Analyses of masonry vaults: A macro approach based on three-dimensional damage model. J. Struct. Eng. 2002, 128, 646–654. [Google Scholar] [CrossRef]
- Gaetani, A.; Lourenço, P.B.; Monti, G.; Milani, G. A parametric investigation on the seismic capacity of masonry cross vaults. Eng. Struct. 2017, 148, 686–703. [Google Scholar] [CrossRef] [Green Version]
- Coccia, S.; Como, M. Minimum thrust of rounded cross vaults. Int. J. Arch. Herit. 2014, 9, 468–484. [Google Scholar] [CrossRef]
- Castori, G.; Borri, A.; De Maria, A.; Corradi, M.; Sisti, R. Seismic vulnerability assessment of a monumental masonry building. Eng. Struct. 2017, 136, 454–465. [Google Scholar] [CrossRef]
- Gusella, V.; Cluni, F. Random field and homogenization for masonry with nonperiodic microstructure. J. Mech. Mater. Struct. 2006, 1, 357–386. [Google Scholar] [CrossRef] [Green Version]
- Cavalagli, N.; Cluni, F.; Gusella, V. Strength domain of non-periodic masonry by homogenization in generalized plane state. Eur. J. Mech. A/Solids 2011, 30, 113–126. [Google Scholar] [CrossRef]
- Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Krenk, S. Friction, dilation, and plastic flow potential. Phys. Dry Granul. Media 1998, 18, 255–260. [Google Scholar] [CrossRef]
- Cavalagli, N.; Gusella, V. Dome of the basilica of santa maria degli angeli in assisi: Static and dynamic assessment. Int. J. Arch. Herit. 2014, 9, 157–175. [Google Scholar] [CrossRef]
- Cavalagli, N.; Gusella, V. Structural investigation of 18th-century ogival masonry domes: From Carlo Fontana to Bernardo Vittone. Int. J. Arch. Herit. 2014, 9, 265–276. [Google Scholar] [CrossRef]
- Clementi, F.; Ferrante, A.; Giordano, E.; Dubois, F.; Lenci, S. Damage assessment of ancient masonry churches stroked by the Central Italy earthquakes of 2016 by the non-smooth contact dynamics method. Bull. Earthq. Eng. 2019, 18, 455–486. [Google Scholar] [CrossRef] [Green Version]
Intensity | mm/dd/yyyy | Epicentral Area | Io | Mw |
---|---|---|---|---|
6 | 10/11/1791 | Sellano | 8 | 5.57 |
7 | 02/12/1854 | Cannara | 8 | 5.57 |
3 | 09/15/1878 | Montefalco | 8 | 5.46 |
3 | 04/14/1918 | Monti Martani | 6 | 4.48 |
5 | 09/19/1979 | Norcia | 8–9 | 5.83 |
5 | 04/29/1984 | Gubbio | 7 | 5.72 |
5–6 | 09/26/1997 | Colfiorito | 8–9 | 5.97 |
Wall Type | fm (MPa) | τ0 (MPa) | E (MPa) | G (MPa) | w (kN/m3) | |
---|---|---|---|---|---|---|
MS | min | 2.6 × 104 | 5.6 × 102 | 1500 | 500 | 21 |
max | 3.8 × 104 | 7.4 × 102 | 1980 | 660 | ||
MB | min | 240 | 6 | 1200 | 400 | 18 |
max | 400 | 9.2 | 1800 | 600 |
E (MPa) | ν | ρ (kN/m4s2) | Φ (°) | ϵ | fb0/fc0 | Kc | μ (s) |
---|---|---|---|---|---|---|---|
3330 | 0.34 | 2 | 10 | 0.1 | 0.16 | 0.667 | 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusella, V.; Liberotti, R. Seismic Vulnerability of Sub-Structures: Vantitelli’s Modulus in Murena Palace. Buildings 2020, 10, 164. https://doi.org/10.3390/buildings10090164
Gusella V, Liberotti R. Seismic Vulnerability of Sub-Structures: Vantitelli’s Modulus in Murena Palace. Buildings. 2020; 10(9):164. https://doi.org/10.3390/buildings10090164
Chicago/Turabian StyleGusella, Vittorio, and Riccardo Liberotti. 2020. "Seismic Vulnerability of Sub-Structures: Vantitelli’s Modulus in Murena Palace" Buildings 10, no. 9: 164. https://doi.org/10.3390/buildings10090164
APA StyleGusella, V., & Liberotti, R. (2020). Seismic Vulnerability of Sub-Structures: Vantitelli’s Modulus in Murena Palace. Buildings, 10(9), 164. https://doi.org/10.3390/buildings10090164