An Approach Concerning Climate Change and Timber Building Resilience: Araucanía Region, South Chile
Abstract
:1. Introduction
2. Research Objective
3. Materials
3.1. Characterisation of the Buildings Analysed
3.2. Climatic Environmental Characterisation
3.3. Characterisation of the Sample
4. Fuzzy Logic Methodology for Evaluating Heritage Buildings’ Functional Performance
4.1. Fuzzification Phase
4.2. Knowledge Base and Inference Rules
4.3. Defuzzification Phase
5. Results and Discussion
5.1. Fuzzy Logic System Applied to Heritage Timber Structures Regarding Current Climatic Conditions
5.2. Climate Change and Building Performance for a Near Future Period (2020–2044)
5.3. Climate Change and Building Performance for a Distant Period (2044–2069)
- Collipulli: (i) the average precipitation (mm) was 1195 mm, equivalent to 5.5 points for the parameter r12 (precipitation); (ii) the average temperature (°C) was 13.2 °C, related to 3.5 points for the parameter r13 (temperature) (Table 8).
- Temuco: (i) the average precipitation (mm) was 1279 mm, equivalent to 5.5 points for the parameter r12 (precipitation); (ii) the average temperature (°C) was 12.8 °C, related to 4.0 points for the parameter r13 (temperature) (Table 8).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, F.; Harun, S.H.; Samad, M.H.A.; Harun, W.M.W. Interior Semantics Of The Lobby/Waiting Area In General Hospitals; A Preliminary Study. In Proceedings of the 2nd International Conference On Built Environment In Developing Countries 2008 [Icbed 2008], Penang, Malaysia, 3–4 December 2008; pp. 232–241. [Google Scholar]
- Endere, M.L.; Zulaica, M.L. Sustentabilidad Socio-Cultural Y Buen Vivir En Sitios Patrimoniales: Evaluación Del Caso Agua Blanca, Ecuador. Ambient. Soc. 2015, 18, 265–290. [Google Scholar] [CrossRef] [Green Version]
- Prieto, A.J.; Verichev, K.; Carpio, M. Heritage, resilience and climate change: A fuzzy logic application in timber-framed masonry buildings in Valparaíso, Chile. Build. Environ. 2020, 174, 106657. [Google Scholar] [CrossRef]
- Günlü, E.; Pırnar, I.; Yağcı, K. Preserving cultural heritage and possible impacts on regional development: Case of Izmir. Int. J. Emerg. 2009, 1, 13. Available online: http://www.regionalstudies.org/uploads/networks/documents/tourism-regional-development-and-public-policy/gunlu.pdf (accessed on 8 July 2021).
- Armitage, L.; Irons, J. The values of built heritage. Prop. Manag. 2013, 31, 246–259. [Google Scholar] [CrossRef]
- 2006 European Comission, NOAH’s Ark European Project, (n.d.). Available online: https://ec.europa.eu/regional_policy/en/projects/germany/noahs-ark (accessed on 8 July 2021).
- C. for Culture, Climate for Culture, (n.d.). Available online: https://www.ohchr.org/Documents/Issues/CulturalRights/Call_ClimateChange/JMassey.pdf (accessed on 8 July 2021).
- Art-Risk Project, Art-Risk. Artificial intelligence applied to the preventive conservation of heritage buildings, (n.d.). Available online: https://www.upo.es/investiga/art-risk-service/art-risk3/index_en.html (accessed on 8 July 2021).
- Howard, A.J.; Hancox, E.; Hanson, J.; Jackson, R. Protecting the Historic Environment from Inland Flooding in the UK: Some Thoughts on Current Approaches to Asset Management in the Light of Planning Policy, Changing Catchment Hydrology and Climate Change. Hist. Environ. Policy Pr. 2017, 29, 1–18. [Google Scholar] [CrossRef]
- Balsas, C.J.L. City Centre Revitalization in Portugal: A Study of Lisbon and Porto. J. Urban. Des. 2007, 12, 231–259. [Google Scholar] [CrossRef]
- MINVU. Ministerio de Vivienda y Urbanismo. 2021. Available online: Https://Www.Minvu.Gob.Cl/ (accessed on 8 July 2021).
- ICOMOS. The Burra Charter: The Australia ICOMOS Charter for Places of Cultural Significance, in: 1999. Available online: http://openarchive.icomos.org/id/eprint/2145/ (accessed on 8 July 2021).
- Johns, J.; Fedeski, M. Adapting building construction to the effects of climate change. In Detecting and Modelling Regional Climate Change; Springer: Berlin/Heidelberg, Germany, 2001; pp. 605–616. [Google Scholar] [CrossRef]
- Phillipson, M.C.; Emmanuel, R.; Baker, P.H. The durability of building materials under a changing climate. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Fatorić, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Chang. 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Lisø, K.R. Integrated approach to risk management of future climate change impacts. Build. Res. Inf. 2006, 34, 1–10. [Google Scholar] [CrossRef]
- Mechler, R.; Bouwer, L.M.; Schinko, T.; Surminski, S.; Linnerooth-Bayer, J. Loss and Damage from Climate Change: Concepts, Methods and Policy Options; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Trow, S. The past as a guide to the future: The long-term view. Conserv. Bull. 2008, 57, 5–7. [Google Scholar]
- Sesana, E.; Gagnon, A.S.; Bonazza, A.; Hughes, J. An integrated approach for assessing the vulnerability of World Heritage Sites to climate change impacts. J. Cult. Heritage 2020, 41, 211–224. [Google Scholar] [CrossRef]
- Fundación de Temuco, Ocupación de la Araucanía, Dirección de Bibliotecas, archivos y museos. 2015. Available online: https://www.cultura.gob.cl/wp-content/uploads/2015/08/Informe-Araucan%C3%ADa-final.pdf (accessed on 8 July 2021).
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2016, 13, 66–73. [Google Scholar] [CrossRef]
- CR2, Center for Climate and Resilience Research. 2021. Available online: http://www.cr2.cl/eng/ (accessed on 8 July 2021).
- Verichev, K.; Zamorano, M.; Carpio, M. Effects of climate change on variations in climatic zones and heating energy consumption of residential buildings in the southern Chile. Energy Build. 2020, 215, 109874. [Google Scholar] [CrossRef]
- Carpio, M.; Prieto, A.J. Methodologies for evaluating the impact of climate aspects on heritage constructions: A Delphi method application. In Rehabend; University of Cantabria: Cantabria, Spain, 2020. [Google Scholar]
- Rovira, A. Appraising territorial heritage in the region of valdivia. In Territorial Heritage and Development; CRC Press: Boca Raton, FL, USA, 2012; pp. 215–230. [Google Scholar]
- Guarda, G. Nueva historia de Valdivia, Ediciones Universidad Católica de Chile. 2001. Available online: http://www.memoriachilena.gob.cl/602/w3-propertyvalue-127202.html (accessed on 8 July 2021).
- Prado, F.; Dalencon, R.; Kramm, F. Arquitectura alemana en el sur de Chile: Importación y desarrollo de patrones tipológicos, espaciales y constructivos. Revista de la construcción 2011, 10, 104–121. [Google Scholar] [CrossRef]
- Saelzer, G. Luis oyarzún house. In Project of heritage intervention, Dirección de Extensión; Universidad Austral de Chile and Consejo Nacional de la Cultura y las Artes: Santiago, Chile, 2018. [Google Scholar]
- Matthews, M.; Cerda Brintrup, G. Valdivia en Madera y Metal; Ediciones: Valdivia, Chile, 1993. [Google Scholar]
- Ewert, F. Arquitectura Patrimonial de La Araucanía: El poblado de Purén; Universidad del Bío-Bío: Concepción, Chile, 1996. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Hooker, R.E.; Ozkul, S.; Yifan, S.; Nilashi, M.; Sabzi, H.Z.; Fei, G.C. Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: A review of three decades of research with recent developments. Expert Syst. Appl. 2019, 137, 202–231. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Bernal, J.M.M.; Calama-Rodríguez, J.M.; Chávez-De-Diego, M.-J. Modelo de predicción de la vida útil de la edificación patrimonial a partir de la lógica difusa. Inf. Construcción 2014, 65, e006. [Google Scholar] [CrossRef] [Green Version]
- ISO31000, Risk management—principles and guidelines. 2009. Available online: https://risk-engineering.org/ISO-31000-risk-management/ (accessed on 8 July 2021).
- Ibáñez, A.J.P.; Bernal, J.M.M.; de Diego, M.J.C.; Sánchez, F.J.A. Expert system for predicting buildings service life under ISO 31000 standard. Application in architectural heritage. J. Cult. Heritage 2016, 18, 209–218. [Google Scholar] [CrossRef]
- Prieto, A.; Verichev, K.; Silva, A.; de Brito, J. On the impacts of climate change on the functional deterioration of heritage buildings in South Chile. Build. Environ. 2020, 183, 107138. [Google Scholar] [CrossRef]
- Prieto, A.J.; Macías-Bernal, J.M.; Chávez, M.J.; Alejandre, F.J.; Silva, A. Impact of maintenance, rehabilitation, and other interventions on functionality of heritage buildings. J. Perform. Constr. Facil. 2019, 33, 04019011. [Google Scholar] [CrossRef]
- Prieto, A.J.; Turbay, I.; Ortiz, R.; Chávez, M.J.; Macías-Bernal, J.M.; Ortiz, P. A fuzzy logic approach to preventive conservation of cultural heritage churches in Popayán, Colombia. Intern. J. Archit. Herit. 2020, 1–20. [Google Scholar] [CrossRef]
- C.-I. Centro Nacional de Microelectrónica, Xfuzzy3.0. 2017. Available online: https://www.csic.es/en/investigacion/institutos-centros-y-unidades/centro-nacional-de-microelectronica (accessed on 8 July 2021).
- C.-I. Centro Nacional de Microelectrónica, Herramientas de CAD para lógica difusa. 2012. Available online: http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/index.html (accessed on 8 July 2021).
- Peykani, P.; Mohammadi, E.; Emrouznejad, A.; Pishvaee, M.S.; Rostamy-Malkhalifeh, M. Fuzzy data envelopment analysis: An adjustable approach. Expert Syst. Appl. 2019, 136, 439–452. [Google Scholar] [CrossRef]
- Ng, G.D.; Quek, C. A Novel Financial Decision Support Systems Based on Mendel Type-2 Fuzzy Set Theory. IJPCC 2015, 1, 1–10. [Google Scholar]
- Iancu, I. A mamdani type fuzzy logic controller. In Fuzzy Logic-Controls, Concepts, Theories and Applications; BoD–Books on Demand: Hamburg, Germany; CRC Press: Boca Ratón, FL, USA, 2012; pp. 325–350. Available online: https://www.intechopen.com/chapters/34221 (accessed on 8 July 2021).
- Ross, T.J. Fuzzy Logic With Engineering Applications; John Wiley & Sons: West Sussex, UK, 2010. [Google Scholar]
- Torres-González, M.; Prieto, A.; Alejandre, F.; Blasco-López, F. Digital management focused on the preventive maintenance of World Heritage Sites. Autom. Constr. 2021, 129, 103813. [Google Scholar] [CrossRef]
- Weber, S. A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 1983, 11, 115–134. [Google Scholar] [CrossRef]
- Chai, Y.; Jia, L.; Zhang, Z. Mamdani Model Based Adaptive Neural Fuzzy Inference System and its Application in Traffic Level of Service Evaluation. Int. J. Comput. Intell. 2009, 4, 555–559. [Google Scholar] [CrossRef]
- Prieto, A.J.; Macías-Bernal, J.M.; Silva, A.; Ortiz, P. Fuzzy Decision-Support System for Safeguarding Tangible and Intangible Cultural Heritage. Sustainability 2019, 11, 3953. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-C.; Lee, A.-S.; Lee, H.-N.; Chen, C.-N.; Liu, Y.-C. An Application of the Fuzzy Delphi Method and Fuzzy AHP on the Discussion of Training Indicators for the Regional Competition, Taiwan National Skills Competition, in the Trade of Joinery. Sustainability 2020, 12, 4290. [Google Scholar] [CrossRef]
- Zhang, K.; Hao, W.-N.; Yu, X.-H.; Jin, D.-W.; Zhang, Z.-H. A Multitasking Genetic Algorithm for Mamdani Fuzzy System with Fully Overlapping Triangle Membership Functions. Int. J. Fuzzy Syst. 2020, 1–17. [Google Scholar] [CrossRef]
- Baturone, I.; Barriga, A.; Jimenez-Fernandez, C.; Lopez, D.R.; Sanchez-Solano, S. Microelectronic Design of Fuzzy Logic-Based Systems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Tahera, K.; Ibrahim, R.; Lochert, P. A fuzzy logic approach for dealing with qualitative quality characteristics of a process. Expert Syst. Appl. 2008, 34, 2630–2638. [Google Scholar] [CrossRef]
- Prieto, A.J.; Silva, A.; De Brito, J.; Macias-Bernal, J.M. Serviceability of facade claddings. Build. Res. Inf. 2017, 46, 179–190. [Google Scholar] [CrossRef]
- Seo, S.N.; Mendelsohn, R. An analysis of crop choice: Adapting to climate change in South American farms. Ecol. Econ. 2008, 67, 109–116. [Google Scholar] [CrossRef]
- Manatsa, D.; Chingombe, W.; Matarira, C.H. The impact of the positive Indian Ocean dipole on Zimbabwe droughts Tropical climate is understood to be dominated by. Int. J. Climatol. 2008, 28, 2011–2029. [Google Scholar] [CrossRef]
- Haugen, A.; Mattsson, J. Preparations for climate change’s influences on cultural heritage. Int. J. Clim. Chang. Strat. Manag. 2011, 3, 386–401. [Google Scholar] [CrossRef]
- Vera, C.; Silvestri, G.; Liebmann, B.; Gonzalez, P. Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mourshed, M. Relationship between annual mean temperature and degree-days. Energy Build. 2012, 54, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Verichev, K.; Carpio, M. Climatic zoning for building construction in a temperate climate of Chile. Sustain. Cities Soc. 2018, 40, 352–364. [Google Scholar] [CrossRef]
- Barrelas, J.; Ren, Q.; Pereira, C. Implications of climate change in the implementation of maintenance planning and use of building inspection systems. J. Build. Eng. 2021, 40, 102777. [Google Scholar] [CrossRef]
Temperature (°C) | 1985–2005 | 2020–2045 | 2045–2069 | ||
RCP2.6 | RCP8.5 | RCP2.6 | RCP8.5 | ||
Temuco | 11.1(−0.01 ± 0.01) | 11.7(± 0.08) | 12.0(± 0.06) | 11.8(± 0.10) | 12.8(± 0.10) |
Collipulli | 11.4(−0.01 ± 0.01) | 12.1(± 0.07) | 12.3(± 0.06) | 12.2(± 0.10) | 13.2(± 0.11) |
Precipitation (mm) | 1985–2005 | 2020–2045 | 2045–2069 | ||
RCP2.6 | RCP8.5 | RCP2.6 | RCP8.5 | ||
Temuco | 1450(99.91% ± 0.32%) | 1369(± 31) | 1369(± 28) | 1348(± 31) | 1279(± 32) |
Collipulli | 1356(99.88% ± 0.36%) | 1271(± 32) | 1279(± 29) | 1254(± 32) | 1195(± 37) |
Vulnerabilities | Ids | Quantitative and Qualitative Evaluation | Qualitative Description |
---|---|---|---|
Geological location | v1 | 1.0—favourable | Optimal stability ground conditions |
2.5—medium | Satisfactory stability ground conditions | ||
4.0—unfavourable | Critical stability ground conditions | ||
Roof design | v2 | 1.0—favourable | Very fast water evacuation of the roof |
4.5—medium/regular | Normal water evacuation of the roof | ||
8.0—unfavourable | Very slow water evacuation of the roof | ||
Environmental conditions | v3 | 1.0—favourable | Building without a complex construction around it |
4.5—medium/regular | Intermediary valuation concerning favourable and unfavourable states | ||
8.0—unfavourable | Structure emplaced inside of complex constructions (city centres) | ||
Constructive system | v4 | 1.0—favourable | Uniform constructive system features |
4.5—medium/regular | Constructive system is defined between uniform and completely heterogeneous constructive system features | ||
8.0—unfavourable | Constructive system presents several heterogeneous features | ||
Preservation | v5 | 1.0—favourable | Optimal state |
4.5—medium/regular | Normal preservation state | ||
8.0—unfavourable | Neglected preservation state |
External Hazards | Ids | Quantitative and Qualitative Evaluation | Qualitative Description |
---|---|---|---|
Static–Structural | |||
Load state modification | r6 | 1.0—favourable | Slight load state modifications (low hazard) |
4.5—medium/regular | Symmetric and balanced load state modifications (medium hazard) | ||
8.0—unfavourable | Disorderly load state modifications (high hazard) | ||
Live loads | r7 | 1.0—favourable | Live load below the original condition (low hazard) |
4.5—medium/regular | Live load equal to the original condition (medium hazard) | ||
8.0—unfavourable | Live load exceeding the original condition (high hazard) | ||
Ventilation | r8 | 1.0—favourable | Natural cross-ventilation in all areas examined (low hazard) |
4.5—medium/regular | Natural cross-ventilation in just some areas examined (medium hazard) | ||
8.0—unfavourable | No natural cross-ventilation (high hazard) | ||
Facilities | r9 | 1.0—favourable | All facilities are in use (low hazard) |
4.5—medium/regular | Some facilities are in use, or they are not ready to be used (medium hazard) | ||
8.0—unfavourable | The facilities are not possible to be used (high hazard) | ||
Fire | r10 | 1.0—favourable | Low fire load regarding a combustible structure (low hazard) |
4.5—medium/regular | Medium fire load regarding a combustible structure (medium hazard) | ||
8.0—unfavourable | High fire load regarding a combustible structure (high hazard) | ||
Inner environment | r11 | 1.0—favourable | Maximum level of health, cleanliness and hygiene of the building’s spaces (low hazard) |
4.5—medium/regular | Medium level of health, cleanliness and hygiene of the building’s spaces (medium hazard) | ||
8.0—unfavourable | Low level of health, cleanliness and hygiene of the building’s spaces (high hazard) | ||
Atmospheric | |||
Precipitations | r12 | 1.0—favourable | Low annual precipitations |
4.5—medium/regular | Medium annual precipitations | ||
8.0—unfavourable | Maximum annual precipitations | ||
Temperature | r13 | 1.0—favourable | Low temperature variances |
4.5—medium/regular | Medium temperature variances | ||
8.0—unfavourable | Maximum temperature variances | ||
Anthropic | |||
Population growth | r14 | 1.0—favourable | Population increases of more than 15% |
4.5—medium/regular | No population increase | ||
8.0—unfavourable | Population increases of less than 5% | ||
Heritage value | r15 | 1.0—favourable | High historical value |
4.5—medium/regular | Normal historical value | ||
8.0—unfavourable | Low historical value | ||
Furniture value | r16 | 1.0—favourable | High social, cultural and liturgical value |
4.5—medium/regular | Medium social, cultural and liturgical value | ||
8.0—unfavourable | Low social, cultural and liturgical value | ||
Occupancy | r17 | 1.0—favourable | High occupancy level |
4.5—medium/regular | Medium occupancy level | ||
8.0—unfavourable | Low occupancy level |
r12—Rainfall/r13—Temperature | Average Annual Precipitation (mm) | Average Annual Temperature (°C) |
---|---|---|
1.0 | <100 | >18.0 |
1.5 | 100–200 | 18.0–17.0 |
2.0 | 200–300 | 17.0–16.0 |
2.5 | 300–350 | 16.0–15.0 |
3.0 | 350–400 | 15.0–14.0 |
3.5 | 400–450 | 14.0–13.0 |
4.0 | 450–500 | 13.0–12.0 |
4.5 | 500–750 | 12.0–11.0 |
5.0 | 750–1000 | 11.0–10.0 |
5.5 | 1000–1500 | 10.0–9.0 |
6.0 | 1500–2000 | 9.0–8.0 |
6.5 | 2000–2500 | 8.0–7.0 |
7.0 | 2500–3000 | 7.0–6.0 |
7.5 | 3000–5000 | 6.0–5.0 |
8.0 | >5000 | <5.0 |
ID Inference Rules | IF | Premise One | AND | Premise Two | THEN | Possible Consequences |
---|---|---|---|---|---|---|
1 | IF | Geological location is optimal | AND | Constructive system is homogeneous regarding the materials used | THEN | Vulnerability of the buildings should be very low |
2 | IF | Geological location is extremely poor | AND | Environmental conditions are regular | THEN | Vulnerability of the buildings is very aggressive concerning a normal state of building conservation |
3 | IF | Occupancy is very high | AND | Heritage value is very high | THEN | Anthropic risks are very high |
4 | IF | Roof is in a neglected state | AND | Preservation is poor | THEN | Vulnerability is very high |
5 | IF | Ventilation does not exist inside the building | AND | Inner environment is normal | THEN | Static–structural risks should be normal |
6 | IF | The building presents several load state modifications over its service life | AND | Facilities do not follow the current standards | THEN | Static–structural risks will be emplaced in an aggressive situation to the current state of the building |
7 | IF | Rainfall and wind normally are not very high | AND | There are no significant variations between minimum and maximum temperatures | THEN | Atmospheric risks are not aggressive to the building |
8 | IF | The building has been intervened with only several months ago | AND | Occupancy is normal concerning the building’s dimensions | THEN | The building does not present a high vulnerability |
9 | IF | Anthropic risks are very low | AND | Vulnerability is at an acceptable level | THEN | The durability of the building is very good |
10 | IF | Atmospheric risks are very aggressive to the current state of the building | AND | Static–structural risks present a high affection | THEN | The durability of the building decreases |
ID Conditions | Range | Levels | Description |
---|---|---|---|
A | (51–30) | Upper level (Green colour) | Vulnerabilities and external hazards are considered low. Therefore, a preventive safeguarding action is not specifically needed in the near future. |
B | (30–20) | Middle level (Orange colour) | Vulnerabilities and external hazards are observed to be moderate. Thus, the costs and benefits need to be balanced when deciding when it is necessary to intervene. |
C | (20–09) | Lower level (Red colour) | Vulnerabilities and external hazards are considered particularly aggressive to the building. Therefore, inspection and preventive maintenance action should be immediately recommended. |
Ids | Location | Vulnerability | Hazards | Output | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Static-Structural | Atmospheric | Anthropic | ||||||||||||||||||
v1 | v2 | v3 | v4 | v5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15 | r16 | r17 | FBSL2.0 | Functionality Conditions | ||
TEM-01 | Temuco | 4.0 | 3.5 | 5.0 | 2.5 | 5.5 | 2.5 | 3.0 | 5.0 | 3.0 | 6.0 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 5.5 | 5.0 | 19.58 | C |
COL-04 | Collipulli | 4.0 | 4.0 | 2.5 | 2.3 | 4.0 | 4.0 | 5.0 | 5.0 | 2.4 | 5.0 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 3.0 | 2.5 | 24.11 | B |
COL-02 | Collipulli | 4.0 | 2.0 | 5.0 | 3.0 | 4.8 | 3.0 | 2.0 | 5.0 | 4.0 | 5.0 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 5.5 | 5.0 | 24.16 | B |
TEM-02 | Temuco | 4.0 | 3.0 | 7.0 | 2.0 | 5.0 | 3.0 | 2.5 | 4.0 | 2.5 | 4.5 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 4.5 | 2.0 | 27.87 | B |
TEM-03 | Temuco | 4.0 | 4.5 | 6.0 | 3.0 | 3.5 | 2.5 | 2.5 | 4.0 | 2.5 | 4.5 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 4.5 | 2.0 | 29.53 | B |
COL-03 | Collipulli | 4.0 | 4.0 | 3.5 | 3.0 | 4.0 | 2.0 | 3.5 | 4.5 | 3.0 | 5.0 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 3.0 | 2.5 | 30.92 | A |
COL-01 | Collipulli | 4.0 | 4.0 | 4.2 | 2.0 | 2.0 | 2.0 | 2.0 | 4.5 | 2.0 | 5.0 | 5.0 | 5.5 | 4.5 | 4.0 | 1.0 | 3.0 | 4.0 | 35.40 | A |
Ids | Functionality | Functionality | |||||||
---|---|---|---|---|---|---|---|---|---|
1985–2005 (According to Table 7) | 2044–2069 | ||||||||
r12 | r13 | FBSL2.0 | Condition | r12 | r13 | FBSL2.0 | Condition | Delta FBSL2.0 | |
TEM-01 | 5.5 | 4.5 | 19.58 | C | 5.5 | 4.0 | 19.52 | C | −0.06 |
COL-04 | 5.5 | 4.5 | 24.11 | B | 5.5 | 3.5 | 22.67 | B | −1.44 |
COL-02 | 5.5 | 4.5 | 24.16 | B | 5.5 | 3.5 | 25.67 | B | 1.51 |
TEM-02 | 5.5 | 4.5 | 27.87 | B | 5.5 | 4.0 | 27.44 | B | −0.43 |
TEM-03 | 5.5 | 4.5 | 29.53 | B | 5.5 | 4.0 | 29.06 | B | −0.47 |
COL-03 | 5.5 | 4.5 | 30.92 | A | 5.5 | 3.5 | 30.35 | A | −0.57 |
COL-01 | 5.5 | 4.5 | 35.40 | A | 5.5 | 3.5 | 34.42 | A | −0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, A.J.; Verichev, K.; Silva, A. An Approach Concerning Climate Change and Timber Building Resilience: Araucanía Region, South Chile. Buildings 2021, 11, 452. https://doi.org/10.3390/buildings11100452
Prieto AJ, Verichev K, Silva A. An Approach Concerning Climate Change and Timber Building Resilience: Araucanía Region, South Chile. Buildings. 2021; 11(10):452. https://doi.org/10.3390/buildings11100452
Chicago/Turabian StylePrieto, Andrés J., Konstantin Verichev, and Ana Silva. 2021. "An Approach Concerning Climate Change and Timber Building Resilience: Araucanía Region, South Chile" Buildings 11, no. 10: 452. https://doi.org/10.3390/buildings11100452
APA StylePrieto, A. J., Verichev, K., & Silva, A. (2021). An Approach Concerning Climate Change and Timber Building Resilience: Araucanía Region, South Chile. Buildings, 11(10), 452. https://doi.org/10.3390/buildings11100452