Experimental Investigation of Unconfined Compressive Properties of Artificial Ice as a Green Building Material for Rinks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Preparation of Ice Specimens
2.1.2. Crystal Structure of Ice Specimens
2.2. Methods
2.2.1. Test Equipment
2.2.2. Test Methods
3. Results
3.1. Stress-strain Curves of Ice Samples
3.2. Failure Mode of Ice Samples and Determination of Creep Parameter n
4. Discussion
4.1. Experimental and Theoretical Strain Rate for Ductile-brittle Transition
4.2. Effect of Strain Rate on the Uniaxial Compressive Strength and Effective Modulus
4.3. Effect of Ice Temperature on the Uniaxial Compressive Strength and Effective Modulus
4.4. Effect of Ice-Making Mode on the Uniaxial Compressive Strength and Effective Modulus
4.5. Effect of Water Quality on the Uniaxial Compressive Strength and Effective Modulus
4.6. Effect of Air Temperature/Humidity on the Uniaxial Compressive Strength and Effective Modulus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.Y.; Li, J.X.; Yang, Q.Y.; Mu, L. Practical application of a novel prefabricated curling ice rink supported by steel–concrete composite floors: In situ measurements of static and dynamic response. Structures 2021, 32, 1888–1906. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, W.Y.; Yang, Q.Y. Dynamic performance of a novel prefabricated curling ice rink: Human locomotion load measurement and FEM simulation analysis. KSCE J. Civ. Eng. 2021, 25, 4799–4813. [Google Scholar] [CrossRef]
- Yu, T.X. Research on Mechanical Properties of Assembly Structure Used to Support Ice of the Curling Ground. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Wei, B. Theoretical Analysis and Finite Element Simulation of the Mechanical Performance of Artificial Ice Rink. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar]
- Pronk, A.; Luo, P.; Li, Q.; Sanders, F.; Overtoom, M.; Coar, L. Success factors in the realization of large ice projects in education. Int. J. Space Struct. 2021, 36, 4–12. [Google Scholar] [CrossRef]
- Pronk, A.; Mistur, M.; Li, Q.; Liu, X.; Blok, R.; Liu, R.; Dong, Y. The 2017–18 design and construction of ice composite structures in Harbin. Structures 2019, 18, 117–127. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Luo, P.; Zhang, R. Structural analysis and construction quality assessment of a free–form ice composite shell. Structures 2020, 27, 868–878. [Google Scholar] [CrossRef]
- Braghin, F.; Cheli, F.; Maldifassi, S.; Melzi, S.; Sabbioni, E. The Engineering Approach to Winter Sports; Springer: New York, NY, USA, 2016; pp. 328–331. [Google Scholar]
- ASHRAE. ASHRAE Handbook—Refrigeration, SI ed.; ASHRAE: Atlanta, GA, USA, 2018; pp. 44.1–44.13. [Google Scholar]
- Poirier, L.; Lozowski, E.P.; Thompson, R.I. Ice hardness in winter sports. Cold Reg. Sci. Technol. 2011, 67, 129–134. [Google Scholar] [CrossRef]
- Timco, G.; Frederking, R. Comparative strengths of fresh water ice. Cold Reg. Sci. Technol. 1982, 6, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Lou, X.; Liu, X.; Pronk, A. The property of fiber reinforced ice under uniaxial compression. Mater. Struct. 2020, 53, 29. [Google Scholar] [CrossRef]
- Lou, X.; Wu, Y. Splitting tensile mechanical properties of plain ice and fiber–reinforced ice. Cold Reg. Sci. Technol. 2021, 192, 103381. [Google Scholar] [CrossRef]
- Petrovic, J.J. Review mechanical properties of ice and snow. J. Mater. Sci. 2003, 38, 1–6. [Google Scholar] [CrossRef]
- Timco, G.W.; Weeks, W.F. A review of the engineering properties of sea ice. Cold Reg. Sci. Technol. 2010, 60, 107–129. [Google Scholar] [CrossRef]
- Jones, S.J. A review of the strength of iceberg and other freshwater ice and the effect of temperature. Cold Reg. Sci. Technol. 2007, 47, 256–262. [Google Scholar] [CrossRef]
- Deng, K.; Feng, X.; Tan, X.; Hu, Y. Experimental research on compressive mechanical properties of ice under low strain rates. Mater. Today Commun. 2020, 24, 101029. [Google Scholar] [CrossRef]
- Luo, W.; Dan, H.; Zeng, R.; Rong, Y.; Xie, D. Experimental investigation on uniaxial unconfined compressive properties of ice on asphalt pavement surface. Front. Mater. 2020, 7, 294. [Google Scholar] [CrossRef]
- Snyder, S.A.; Schulson, E.M.; Renshaw, C.E. Effects of prestrain on the ductile–to–brittle transition of ice. Acta Mater. 2016, 108, 110–127. [Google Scholar] [CrossRef] [Green Version]
- Renshaw, C.; Schulson, E. Universal behaviour in compressive failure of brittle materials. Nature 2001, 412, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Z.; Lei, R.; Lu, P.; Han, H. Estimation of the uniaxial compressive strength of Arctic Sea ice during melt season. Cold Reg. Sci. Technol. 2018, 151, 9–18. [Google Scholar] [CrossRef]
- Zaretsky, Y.K.; Fish, A.M. Effect of temperature on the strength and viscosity of ice. Soil Mech. Found Eng. 1996, 33, 46–52. [Google Scholar] [CrossRef]
- Fish, A.M.; Zaretsky, Y.K. Ice Strength as a function of hydrostatic pressure and temperature. Available online: https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/6095/download (accessed on 24 November 2021).
- Serdar, T.I.; Ankush, K.; Jeom, K.P. A new constitutive equation on ice materials. Ships Offshore Struc. 2017, 12, 610–623. [Google Scholar]
- Farid, H.; Farzaneh, M.; Saeidi, A.; Erchiqui, F. A contribution to the study of the compressive behavior of atmospheric ice. Cold Reg. Sci. Technol. 2016, 121, 60–65. [Google Scholar] [CrossRef]
- Kermani, M.; Farzaneh, M.; Gagnon, R. Compressive strength of atmospheric ice. Cold Reg. Sci. Technol. 2007, 49, 195–205. [Google Scholar] [CrossRef]
- Schwarz, J.; Frederking, R.; Gavrillo, V.; Petrov, I.G.; Hirayama, K.I.; Mellor, M.; Vaudrey, K.D. Standardized testing methods for measuring mechanical properties of ice. Cold Reg. Sci. Technol. 1981, 4, 245–253. [Google Scholar] [CrossRef]
- Kobayashi, T. Studies of the properties of the ice in speed skating rinks. ASHRAE J. 1973, 15, 51–56. [Google Scholar]
- Strub–Klein, L. A statistical analysis of first–year level ice uniaxial compressive strength in the Svalbard Area. J. Offshore Mech. Arct. Eng. 2017, 139, 011503. [Google Scholar] [CrossRef]
- Li, D.; Du, F. Monitoring and evaluating the failure behavior of ice structure using the acoustic emission technique. Cold Reg. Sci. Technol. 2016, 129, 51–59. [Google Scholar] [CrossRef]
- Petrich, C.; Saether, I.; Fransson, L.; Sand, B.; Arntsen, B. Time–dependent spatial distribution of thermal stresses in the ice cover of a small reservoir. Cold Reg. Sci. Technol. 2015, 120, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Duddu, R.; Waisman, H. A temperature dependent creep damage model for polycrystalline ice. Mech. Mater. 2012, 46, 23–41. [Google Scholar] [CrossRef]
- Glen, J.W. The creep of polycrystalline ice. Proc. R. Soc. Lond. A 1955, 228, 519–538. [Google Scholar]
- Cole, M. Deformation and failure of ice under constant stress or constant strain–rate. Cold Reg. Sci. Technol. 1982, 5, 201–219. [Google Scholar]
- Barrette, P.D.; Jordaan, I.J. Pressure–temperature effects on the compressive behavior of laboratory–grown and iceberg ice. Cold Reg. Sci. Technol. 2003, 36, 25–36. [Google Scholar] [CrossRef]
- Petrenko, V.F.; Whitworth, R.W. Physics of Ice; Oxford University Press: New York, NY, USA, 1999; pp. 133–143. [Google Scholar]
- Seifaddini, M.; Aryanpour, G.; Farzaneh, M. Structural properties and simple compression behavior of laboratory–made polycrystalline isotropic ice at high temperatures. J. Offshore Mech. Arct. 2018, 140, 011501. [Google Scholar] [CrossRef]
- Jones, J. The Confined compressive strength of polycrystalline ice. J. Glaciol. 1982, 28, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Yasui, M.; Schulson, E.M.; Renshaw, C.E. Experimental studies on mechanical properties and ductile–to–brittle transition of ice–silica mixtures: Young’s modulus, compressive strength, and fracture toughness. J. Geophys. Res. Solid Earth 2017, 122, 6014–6030. [Google Scholar] [CrossRef]
- Batto, R.A.; Schulson, E.M. On the ductile-to-brittle transition in ice under compression. Acta Metall. Mater. 1993, 41, 2219–2225. [Google Scholar] [CrossRef]
- Golding, N.; Burks, C.E.; Lucas, K.N.; Fortt, A.L.; Synder, S.A.; Schulson, E.M. Mechanical properties of the ice I-magnesium sulfate eutectic: A comparison with freshwater ice in reference to Europa. Icarus 2013, 225, 248–256. [Google Scholar] [CrossRef]
- Schulson, E.M. The brittle compressive fracture of ice. Acta Metall. Mater. 1990, 38, 1963–1976. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Z.K.; Li, Z.J.; Wang, J. The experiment of fracture mechanics characteristics of Yellow River Ice. Cold Reg. Sci. Technol. 2019, 168, 102896. [Google Scholar] [CrossRef]
- Wang, E.; Xiang, F.; Han, H.; Liu, X.; Xiao, Y.; Leng, Y. Study on the mechanical properties of compacted snow under uniaxial compression and analysis of influencing factors. Cold Reg. Sci. Technol. 2020, 182, 103215. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Jia, Q.; Huang, W. Experimental study on uniaxial compressive strength of reservoir ice. Trans Tianjin Univ. 2012, 18, 112–116. [Google Scholar] [CrossRef]
- Farid, H.; Saeidi, A.; Farzaneh, M.; Erchiqui, F. An atmospheric ice empirical failure criterion. Cold Reg. Sci. Technol. 2018, 146, 81–86. [Google Scholar] [CrossRef]
- Aksenov, V.I.; Gevorkyan, S.G.; Iospa, A.V. Temperature dependence of stress-strain properties of freshwater ice. Soil Mech. Found Eng. 2019, 56, 366–370. [Google Scholar] [CrossRef]
- Daoud, A.; Galanis, N.; Bellache, O. Calculation of refrigeration loads by convection, radiation and condensation in ice rinks using a transient 3D zonal model. Appl. Therm. Eng. 2008, 28, 1782–1790. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Zhang, T. Effect of air parameters on ice sublimation in ice rink. Build. Environ. 2021, 188, 107470. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.X.; Zhang, Z.F. General relationship between strength and hardness. Mat. Sci. Eng. A–Struct. 2011, 529, 62–73. [Google Scholar] [CrossRef]
NO. | Loading Rate (mm/min) | Strain Rate | Ice Temperature (°C) | Thickness/Layer (mm) | TDS (mg/L) | Air Temperature and Humidity (°C/%) |
---|---|---|---|---|---|---|
AIC–V005 | 0.05 | 8.33 × 10−6 | –8.5 | 5 | 10 | 14/50 |
AIC–V015 | 0.15 | 2.5 × 10−5 | –8.5 | 5 | 10 | 14/50 |
AIC–V03 | 0.3 | 5 × 10−5 | –8.5 | 5 | 10 | 14/50 |
AIC–V05 | 0.5 | 8.33 × 10−5 | –8.5 | 5 | 10 | 14/50 |
AIC–V1 | 1 | 1.67 × 10−4 | –8.5 | 5 | 10 | 14/50 |
AIC–V2 | 2 | 3.33 × 10−4 | –8.5 | 5 | 10 | 14/50 |
AIC–V5 | 5 | 8.33 × 10−4 | –8.5 | 5 | 10 | 14/50 |
AIC–V10 | 10 | 1.67 × 10−3 | –8.5 | 5 | 10 | 14/50 |
AIC–T5 | 5 | 8.33 × 10−4 | –5 | 5 | 10 | 14/50 |
AIC–T15 | 5 | 8.33 × 10−4 | –15 | 5 | 10 | 14/50 |
AIC–T25 | 5 | 8.33 × 10−4 | –25 | 5 | 10 | 14/50 |
AIC–T35 | 5 | 8.33 × 10−4 | –35 | 5 | 10 | 14/50 |
AIC–H1 | 5 | 8.33 × 10−4 | –8.5 | 1 | 10 | 14/50 |
AIC–H10 | 5 | 8.33 × 10−4 | –8.5 | 10 | 10 | 14/50 |
AIC–D50 | 5 | 8.33 × 10−4 | –8.5 | 5 | 50 | 14/50 |
AIC–D100 | 5 | 8.33 × 10−4 | –8.5 | 5 | 100 | 14/50 |
AIC–E10/70 | 5 | 8.33 × 10−4 | –8.5 | 5 | 10 | 10/70 |
AIC–E22/35 | 5 | 8.33 × 10−4 | –8.5 | 5 | 10 | 22/35 |
Strain Rate | a | b | R2 |
---|---|---|---|
In ductile regime | 12.300 | 0.195 | 0.921 |
In brittle regime | 0.169 | −0.302 | 0.990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, J.; Yuan, B.; Wang, L.; Yang, Q. Experimental Investigation of Unconfined Compressive Properties of Artificial Ice as a Green Building Material for Rinks. Buildings 2021, 11, 586. https://doi.org/10.3390/buildings11120586
Zhang W, Li J, Yuan B, Wang L, Yang Q. Experimental Investigation of Unconfined Compressive Properties of Artificial Ice as a Green Building Material for Rinks. Buildings. 2021; 11(12):586. https://doi.org/10.3390/buildings11120586
Chicago/Turabian StyleZhang, Wenyuan, Junxing Li, Baojiang Yuan, Lin Wang, and Qiyong Yang. 2021. "Experimental Investigation of Unconfined Compressive Properties of Artificial Ice as a Green Building Material for Rinks" Buildings 11, no. 12: 586. https://doi.org/10.3390/buildings11120586
APA StyleZhang, W., Li, J., Yuan, B., Wang, L., & Yang, Q. (2021). Experimental Investigation of Unconfined Compressive Properties of Artificial Ice as a Green Building Material for Rinks. Buildings, 11(12), 586. https://doi.org/10.3390/buildings11120586