Explicit Dynamic Analysis by a Rigid Body-Spring Model of Impact Loads of Artillery on Middle Age Fortifications
Abstract
:1. Introduction
2. Middle Age Fortification Geometry
3. Middle Age Cannons
4. Cannon Ball Ballistic in Air
5. Material Properties
6. Finite Element Model
6.1. Numerical Model
6.2. Material Constitutive Behavior
6.3. FEM Results
7. Rigid Body-Spring Model
7.1. Fundamental Unit of the Model
7.2. Numerical Model
7.3. Spring Behavior
7.4. RBSM Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Galilei, G. Breve Instruzione all’Architettura Militare. In Le opere di Galileo Galilei; Tipografia di G. Barbera: Florence, Italy, 1891; Volume II. [Google Scholar]
- Guilmartin, J.F. Military Technology—Encyclopædia Britannica. 4 November 2020. Available online: https://www.britannica.com/technology/military-technology (accessed on 24 November 2021).
- Wei, X.; Stewart, M.G. Model validation and parametric study on the blast response of unreinforced brick masonry walls. Int. J. Impact Eng. 2010, 37, 1150–1159. [Google Scholar] [CrossRef]
- Burnett, S.; Gilbert, M.; Molyneaux, T.; Beattie, G.; Hobbs, B. The performance of unreinforced masonry walls subjected to low-velocity impacts: Finite element analysis. Int. J. Impact Eng. 2007, 34, 1433–1450. [Google Scholar] [CrossRef]
- Gilbert, M.; Hobbs, B.; Molyneaux, T. The performance of unreinforced masonry walls subjected to low-velocity impacts: Experiments. Int. J. Impact Eng. 2002, 27, 231–251. [Google Scholar] [CrossRef]
- Gilbert, M.; Hobbs, B.; Molyneaux, T. The performance of unreinforced masonry walls subjected to low-velocity impacts: Mechanism analysis. Int. J. Impact Eng. 2002, 27, 253–275. [Google Scholar] [CrossRef]
- Milani, G.; Lourenço, P.B.; Tralli, A. Homogenized rigid-plastic model for masonry walls subjected to impact. Int. J. Solids Struct. 2009, 46, 4133–4149. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.C.; Lourenço, P.B.; Milani, G. Rigid block and spring homogenized model (HRBSM) for masonry subjected to impact and blast loading. Int. J. Impact Eng. 2017, 109, 14–28. [Google Scholar] [CrossRef]
- Rafsanjani, S.H.; Lourenço, P.; Peixinho, N. Dynamic interface model for masonry walls subjected to high strain rate out-of-plane loads. Int. J. Impact Eng. 2015, 76, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xiong, W.; Li, Z.X.; Xu, Q. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions. Int. J. Impact Eng. 2016, 90, 122–131. [Google Scholar] [CrossRef]
- Asad, M.; Dhanasekar, M.; Zahra, T.; Thambiratnam, D. Failure analysis of masonry walls subjected to low velocity impacts. Eng. Fail. Anal. 2020, 116, 104706. [Google Scholar] [CrossRef]
- Pourfalah, S.; Cotsovos, D.M.; Suryanto, B.; Moatamedi, M. Out-of-plane behaviour of masonry specimens strengthened with ECC under impact loading. Eng. Struct. 2018, 173, 1002–1018. [Google Scholar] [CrossRef]
- Casolo, S.; Milani, G. Simplified out-of-plane modelling of three-leaf masonry walls accounting for the material texture. Constr. Build. Mater. 2013, 40, 330–351. [Google Scholar] [CrossRef]
- Tiberti, S.; Milani, G. 3D homogenized limit analysis of non-periodic multi-leaf masonry walls. Comput. Struct. 2020, 234, 106253. [Google Scholar] [CrossRef]
- Lewtas, I.; McAlister, R.; Wallis, A.; Woodley, C.; Cullis, I. The ballistic performance of the bombard Mons Meg. Def. Technol. 2016, 12, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Clifford, J.R. Gunpowder Artillery in Europe, 1326–1500: Innovation and Impact. In Technology, Violence, and War; Ehlers, R.S., Jr., Douglas, S.K., Curzon, D.P.M., Eds.; BRILL: Leiden, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Casolo, S.; Milani, G.; Tateo, V. Analysis of damage due to artillery strikes on two types of fortress typical of the middle ages and of the renaissance periods. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering, Eccomas Proceedia, Crete, Greece, 24–26 June 2019; Volume 1, pp. 1344–1355. [Google Scholar] [CrossRef] [Green Version]
- Kakaliagos, A.; Ninis, N. Damage and failure of Orban’s gun during the bombardment of Constantinople walls in 1453. Frat. Integrità Strutt. 2019, 13, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Casolo, S. Modelling in-plane micro-structure of masonry walls by rigid elements. Int. J. Solids Struct. 2004, 41, 3625–3641. [Google Scholar] [CrossRef]
- Casolo, S. Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. Int. J. Solids Struct. 2006, 43, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Casolo, S. Macroscale modelling of microstructure damage evolution by a rigid body and spring model. J. Mech. Mater. Struct. 2009, 4, 551–570. [Google Scholar] [CrossRef] [Green Version]
- Biolzi, L.; Casolo, S.; Diana, V.; Sanjust, C. Estimating laminated glass beam strength via stochastic Rigid Body-Spring Model. Compos. Struct. 2017, 172, 61–72. [Google Scholar] [CrossRef]
- Krebs, R.E. Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Middle Ages and the Renaissance; Greenwood Publishing Group: London, UK, 2004. [Google Scholar]
- Manucy, A.C. Artillery through the Ages A Short Illustrated History of Cannon, Emphasizing Types Used in America; Interpretive Series, History, 1; National Park Service: Washington, DC, USA, 1949.
- Gentile, M.L. Gli Annales Pisani di Bernardo Maragone; Nicola Zanichelli: Bologna, Italy, 1930–1936. [Google Scholar]
- Associazione AMUR, Associazione per le Mura di Pisa. Available online: https://www.muradipisa.it/le-mura/ (accessed on 8 October 2021).
- Napolitano, D. Mura di Pisa, Vista da Largo Zan Zeno. Available online: https://commons.wikimedia.org/wiki/File:Mura_di_Pisa,_Vista_da_Largo_Zan_Zeno.jpg (accessed on 7 October 2021).
- Clephan, R.C. The Ordnance of the Fourteenth and Fifteenth Centuries. Archaeol. J. 1911, 68, 49–138. [Google Scholar] [CrossRef]
- Tartaglia, N. La Nova Scientia; Arnaldo Forni Editore: Bologna, Italy, 1984. [Google Scholar]
- NASA. Drag on a Sphere. Available online: https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/drag-of-a-sphere/ (accessed on 5 October 2021).
- Ministero delle Infrastrutture e dei Trasporti. Aggiornamento delle Norme Tecniche per le Costruzioni, Decreto Ministeriale 17 Gennaio 2018. Gazzetta Ufficiale n. 42, Suppl. Ordinario. 20 February 2018. Rome, Italy. Available online: https://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf (accessed on 24 November 2021). (In Italian)
- Van der Pluijm, R. Non-linear Behaviour of Masonry under Tension. Heron 1997, 42, 25–54. [Google Scholar]
- Reyes, E.; Casati, M.; Gálvez, J. Cohesive crack model for mixed mode fracture of brick masonry. Int. J. Fract. 2008, 151, 29–55. [Google Scholar] [CrossRef]
- Schneemayer, A.; Schranz, C.; Kolbitsch, A.; Tschegg, E.K. Fracture-Mechanical Properties of Mortar-to-Brick Interfaces. J. Mater. Civ. Eng. 2014, 26, 04014060. [Google Scholar] [CrossRef]
- Burnett, S.; Gilbert, M.; Molyneaux, T.; Tyas, A.; Hobbs, B.; Beattie, G. The response of masonry joints to dynamic tensile loading. Mater. Struct. Constr. 2007, 40, 517–527. [Google Scholar] [CrossRef]
- Hao, H.; Tarasov, B. Experimental Study of Dynamic Material Properties of Clay Brick and Mortar at Different Strain Rates. Aust. J. Struct. Eng. 2008, 8, 117–132. [Google Scholar] [CrossRef]
- Pereira, J.; Lourenço, P. Experimental characterization of masonry and masonry components at high strain rates. J. Mater. Civ. Eng. 2017, 29, 04016223. [Google Scholar] [CrossRef] [Green Version]
- Smith, M. ABAQUS Analysis User’s Guide, Version 2016; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2016. [Google Scholar]
- Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Sarhosis, V.; Milani, G.; Formisano, A.; Fabbrocino, F. Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers. Bull. Earthq. Eng. 2018, 16, 1511–1545. [Google Scholar] [CrossRef] [Green Version]
- De Iasio, A.; Wang, P.; Scacco, J.; Milani, G.; Li, S. Longhu pagoda: Advanced numerical investigations for assessing performance at failure under horizontal loads. Eng. Struct. 2021, 244, 112715. [Google Scholar] [CrossRef]
- Sferrazza Papa, G.; Tateo, V.; Parisi, M.; Casolo, S. Seismic response of a masonry church in Central Italy: The role of interventions on the roof. Bull. Earthq. Eng. 2021, 19, 1151–1179. [Google Scholar] [CrossRef]
- Casolo, S. A linear-elastic heuristic-molecular modelling for plane isotropic micropolar and auxetic materials. Int. J. Solids Struct. 2021, 224, 111042. [Google Scholar] [CrossRef]
- Casolo, S.; Peña, F. Rigid element model for in-plane dynamics of masonry walls considering hysteretic behaviour and damage. Earthq. Eng. Struct. Dyn. 2007, 36, 1029–1048. [Google Scholar] [CrossRef]
- Casolo, S.; Milani, G.; Uva, G.; Alessandri, C. Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Eng. Struct. 2013, 49, 465–490. [Google Scholar] [CrossRef]
- Cusatis, G.; Pelessone, D.; Mencarelli, A. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cem. Concr. Compos. 2011, 33, 881–890. [Google Scholar] [CrossRef]
- Gedik, Y.H.; Nakamura, H.; Yamamoto, Y.; Kunieda, M. Evaluation of three-dimensional effects in short deep beams using a rigid-body-spring-model. Cem. Concr. Compos. 2011, 33, 978–991. [Google Scholar] [CrossRef]
Masonry | E (MPa) | f (MPa) | f (MPa) | G (N/m) |
---|---|---|---|---|
Split stones with good texture | 1740 | 2.6 | 0.26 | 20 |
Squared stones | 2850 | 5.8 | 0.58 | 25 |
Messy stones | 870 | 1.0 | 0.10 | 15 |
Bricks and mortar | 1500 | 2.6 | 0.26 | 20 |
Dilatation Angle | Eccentricity | K | Viscosity Parameter | |
---|---|---|---|---|
15° | 0.1 | 1.16 | 0.667 | 1 × 10 |
Material | (mm) | (mm) | ||
---|---|---|---|---|
Split stones with good texture | 0.134 | 2.660 | 0.064 | 0.449 |
Squared stones | 0.183 | 2.170 | 0.022 | 0.151 |
Erratic stones | 0.103 | 2.970 | - | 0.500 |
Bricks and mortar | 0.156 | 2.440 | 0.064 | 0.449 |
Split stones with good Texture | ||||
Normal | Diagonal | |||
Points | (MPa) | (MPa) | ||
Compressive | ||||
E | 2.39 | 3.70 | 2.39 | 3.70 |
S | 13.00 | 4.11 | 26.00 | 4.11 |
Tensile | ||||
E | 0.36 | 0.56 | 0.36 | 0.56 |
S | 0.58 | 0.00 | 1.15 | 0.00 |
Squared stones | ||||
Normal | Diagonal | |||
Points | (MPa) | (MPa) | ||
Compressive | ||||
E | 1.84 | 8.25 | 1.84 | 8.25 |
S | 13.00 | 9.16 | 26.00 | 9.16 |
Tensile | ||||
E | 0.49 | 1.24 | 0.49 | 1.24 |
S | 0.19 | 0.00 | 0.39 | 0.00 |
Erratic stones | ||||
Normal | Diagonal | |||
Points | (MPa) | (MPa) | ||
Compressive | ||||
E | 1.84 | 1.42 | 1.84 | 1.42 |
S | 13.00 | 1.58 | 26.00 | 1.58 |
Tensile | ||||
E | 0.28 | 0.21 | 0.28 | 0.21 |
S | 1.88 | 0.00 | 3.75 | 0.00 |
Bricks and mortar | ||||
Normal | Diagonal | |||
Points | (MPa) | (MPa) | ||
Compressive | ||||
E | 2.77 | 3.70 | 2.77 | 3.70 |
S | 13.00 | 4.11 | 26.00 | 4.11 |
Tensile | ||||
E | 0.42 | 0.59 | 0.42 | 0.59 |
S | 0.58 | 0.00 | 1.15 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tateo, V.; Casolo, S. Explicit Dynamic Analysis by a Rigid Body-Spring Model of Impact Loads of Artillery on Middle Age Fortifications. Buildings 2021, 11, 607. https://doi.org/10.3390/buildings11120607
Tateo V, Casolo S. Explicit Dynamic Analysis by a Rigid Body-Spring Model of Impact Loads of Artillery on Middle Age Fortifications. Buildings. 2021; 11(12):607. https://doi.org/10.3390/buildings11120607
Chicago/Turabian StyleTateo, Vito, and Siro Casolo. 2021. "Explicit Dynamic Analysis by a Rigid Body-Spring Model of Impact Loads of Artillery on Middle Age Fortifications" Buildings 11, no. 12: 607. https://doi.org/10.3390/buildings11120607
APA StyleTateo, V., & Casolo, S. (2021). Explicit Dynamic Analysis by a Rigid Body-Spring Model of Impact Loads of Artillery on Middle Age Fortifications. Buildings, 11(12), 607. https://doi.org/10.3390/buildings11120607