Net-Zero Energy Districts and the Grid: An Energy-Economic Feasibility Case-Study of the National Western Center in Denver, CO, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Load
2.2. Renewable Energy Generation
2.2.1. PhotoVoltaic Electricity
2.2.2. Combined Heat and Power
2.2.3. Heat Pump
2.2.4. Energy Storage
2.3. Load/Generation Balance
2.4. Energy & Economic Analysis
2.5. Model Sensitivity
3. Results
3.1. Campus Energy Load
3.2. Campus Energy Generation
3.3. Energy Storage and Balance
3.4. Levelized Cost of Energy
3.5. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Electrical Technologies | IRR | Thermal Technology | IRR |
---|---|---|---|
Photovoltaics | 7% | Wastewater Heat Recovery | –2% |
On-Site Wind | –3% | Biomass | 9% |
Off-Site Wind | 17% | Solar Heating | –13% |
Ground-Source Heat Pump | 0% |
Normal | Heat Pump (HP) | 2× Summer | 2× Summer HP | |
---|---|---|---|---|
Electric Load [×106 MJ] | 44 | 45 | 54 | 55 |
Natural gas Load [×106 MJ] | 13 | 5.5 | 14 | 6.0 |
Total Energy Load [×106 MJ] | 57 | 51 | 67 | 61 |
Relative to Normal | 100% | 90% | 119% | 108% |
Fraction Electric | 77% | 89% | 80% | 90% |
Fraction Natural gas | 23% | 11% | 20% | 10% |
Phase (Year) | Building/Complex | IECC Representative Building Type | Size [m2 (ft2)] | EUI [MJ/m2-yr. (kBTU/ft2-yr.)] |
---|---|---|---|---|
0 (existing) | Coliseum | n/a—utility bills | 16,100 (173,000) | 408 (36) |
0 (existing) | Stadium/Hall of Education | n/a—utility bills | 24,000 (258,000) | 508 (45) |
0 (existing) | Events Center | n/a—utility bills | 23,300 (251,000) | 286 (25) |
1 (1) | Maintenance (renovation) | Warehouse | 5410 (58,200) | 183 (16) |
1 (1) | Stock Show Arena & Auction | Warehouse | 3630 (39,000) | 183 (16) |
2 (2) | CSU WRC | Secondary School | 13,800 (148,000) | 490 (43) |
3 (3) | Animal Health | Outpatient Healthcare | 7240 (77,900) | 1180 (104) |
4 (6) | Livestock Hall & Arena | Warehouse | 30,200 (325,000) | 183 (16) |
5 (9) | Equestrian Arenas & Paddocks | Warehouse | 47,200 (508,000) | 183 (16) |
Weighted Average: | 331 (29) |
Building/Use | Size [sq ft.] | Roof Type | Number of Roof Segments | Available PV Area [m2] | Annual PV Capacity [kWh] | Ratio of Building Energy Needs |
---|---|---|---|---|---|---|
Stock Show Arena & Auction | 39,000 | pitched | 4 | 2740 | 571,000 | 310% |
Livestock Hall | 221,000 | pitched | 5 | 11,800 | 2,520,000 | 241% |
Livestock Arena | 103,000 | pitched | 2 | 8250 | 1,730,000 | 353% |
Equestrian Barn | 220,000 | pitched | 3 | 5440 | 1,170,000 | 113% |
Equestrian Warm-up (2×) | 39,600 | pitched | 2 | 1420 | 297,000 | 159% |
Equestrian Paddock (2×) | 61,600 | pitched | 3 | 3070 | 650,000 | 223% |
Equestrian Arena (Sm + Lg) | 187,000 | flat | 2 | 15,000 | 2,134,000 | 242% |
CSU WRC (2-story) | 148,000 | flat | 2 | 5780 | 821,000 | 41% |
Animal Health | 77,900 | flat | 1 | 6230 | 885,000 | 34% |
Building Load | Capacity |
---|---|
Peak Cooling Load | 6483 MBh (540 tons) |
Peak Heating Load | 8266 MBh |
Item | Cost | $/ft2 |
---|---|---|
Alternative 1 (Geothermal) Estimated Cost | $8,400,000 | $33.86 |
Alternative 2 (Conventional) Estimated Cost | $7,224,000 | $29.12 |
Initial Differential Cost | $1,176,000 |
References
- Polly, B.; Kutscher, C.; Macumber, D.; Schott, M. From zero energy buildings to zero energy districts. In Proceedings of the 2016 ACEEE Summer Study Energy Efficiency in Buildings, Pacific Grove, CA, USA, 21–26 August 2016. [Google Scholar]
- Pless, S.; Torcellini, P. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options; NREL/TP-550-44586; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Carlisle, N.; Van Geet, O.; Pless, S. Definition of a “Zero Net Energy” Community 2009; NREL/TP-7A2-46065; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Attia, S.; Hamdy, M.; O’Brien, W.; Carlucci, S. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy Build. 2013, 60, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Fonseca, J.A.; Schlueter, A. A review of simulation-based urban form generation and optimization for energy-driven urban design. Build. Environ. 2017, 121, 119–129. [Google Scholar] [CrossRef]
- Wang, C.; Kilkis, S.; Tjernström, J.; Nyblom, J.; Martinac, I. Multi-objective optimization and parametric analysis of energy system designs for the Albano University Campus in Stockholm. Procedia Eng. 2017, 180, 621–630. [Google Scholar] [CrossRef]
- Sameti, M.; Haghighat, F. Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation. Energy 2018, 153, 575–591. [Google Scholar] [CrossRef]
- Doubleday, K.; Parker, A.; Hafiz, F.; Irwin, B.; Hancock, S.; Pless, S.; Hodge, B.M. Toward a subhourly net zero energy district design through integrated building and distribution system modeling. J. Renew. Sustain. Energy 2019, 11, 36301. [Google Scholar] [CrossRef]
- Amaral, A.R.; Rodrigues, E.; Rodrigues Gaspar, A.; Gomes, Á. Review on performance aspects of nearly zero-energy districts. Sustain. Cities Soc. 2018, 43, 406–420. [Google Scholar] [CrossRef]
- Lopes, R.A.; Martins, J.; Aelenei, D.; Lima, C.P. A cooperative net zero energy community to improve load matching. Renew. Energy 2016, 93, 1–13. [Google Scholar] [CrossRef]
- Parra, D.; Swierczynski, M.; Stroe, D.I.; Norman, S.A.; Abdon, A.; Worlitschek, J.; O’Doherty, T.; Rodrigues, L.; Gillott, M.; Zhang, X.; et al. An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 79, 730–749. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Tervo, E.; Agbim, K.; DeAngelis, F.; Hernandez, J.; Kim, H.K.; Odukomaiya, A. An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States. Renew. Sustain. Energy Rev. 2018, 94, 1057–1066. [Google Scholar] [CrossRef]
- Kalkan, N.; Bercin, K.; Cangul, O.; Morales, M.G.; Saleem, M.M.K.M.; Marji, I.; Metaxa, A.; Tsigkogianni, E. A renewable energy solution for Highfield Campus of University of Southampton. Renew. Sustain. Energy Rev. 2011, 15, 2940–2959. [Google Scholar] [CrossRef]
- Kwan, C.L.; Hoffmann, A. The Los Angeles Community College District: Establishing a net-zero energy campus. In Sustainable Communities Design Handbook; Butterworth-Heinemann: Oxford, UK, 2010; pp. 181–215. [Google Scholar] [CrossRef]
- Ferrari, S.; Beccali, M. Energy-environmental and cost assessment of a set of strategies for retrofitting a public building toward nearly zero-energy building target. Sustain. Cities Soc. 2017, 32, 226–234. [Google Scholar] [CrossRef]
- Pless, S.; Polly, B. Communities of the Future: Accelerating Zero Energy District Master Planning; NREL/CP-5500-71841; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2018. [Google Scholar]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- U.S. Department of Energy’s, Building Technologies Office. Index Energyplus.Net 2018. Available online: https://energyplus.net/ (accessed on 20 March 2020).
- National Western Center Partners. 5348a90d386c0515d63b98f9b274d3b6aab8541b @ nationalwesterncenter.com 2015. Available online: https://nationalwesterncenter.com/about/the-redevelopment-process/sustainability-regen/ (accessed on 21 July 2018).
- National Western Center Partners. National Western Center Master Plan 2015. Available online: https://denvernwc.wpengine.com/wp-content/uploads/2017/10/NWC-Master-Plan-2015.pdf (accessed on 6 December 2021).
- Marique, A.-F.; Reiter, S. A simplified framework to assess the feasibility of zero-energy at the neighbourhood/community scale. Energy Build. 2014, 82, 114–122. [Google Scholar] [CrossRef] [Green Version]
- NREL. Index @ Pvwatts.Nrel.Gov 2019. Available online: http://pvwatts.nrel.gov/ (accessed on 8 May 2020).
- U.S. DOE. Prototype_Models www.energycodes.gov 2015. Available online: https://www.energycodes.gov/development/commercial/prototype_models (accessed on 21 July 2018).
- Fu, R.; Feldman, D.; Margolis, R.; Woodhouse, M.; Ardani, K. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017; NREL/TP-6A20-68925; National Renewable Energy Lab (NREL): Golden, CO, USA, 2017. [Google Scholar] [CrossRef]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Csányi, S.; Vincze, A.; Pintér, G. Economic analysis of grid-connected PV system regulations: A Hungarian case study. Electronics 2019, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; et al. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock; TP-5500-46861; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2011; pp. 1–118. [Google Scholar]
- U.S. DOE. Building Science-Based Climate Maps 2013:2. Available online: https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/4_3a_ba_innov_buildingscienceclimatemaps_011713.pdf (accessed on 6 December 2021).
- Jenkins, T. Solar-Powered Water Pump Design Spreadsheet Version II: User Manual; New Mexico State University: Las Cruces, NM, USA, 2014; pp. 1–12. [Google Scholar] [CrossRef]
- Riley, D.; Hansen, C. Sun-relative Pointing for dual-axis solar trackers employing azimuth and elevation rotations. J. Sol. Energy Eng. 2015, 137, 31006–31008. [Google Scholar] [CrossRef] [Green Version]
- Solarworld. SW 285-300 MONO (5-busbar) n.d.:3–4. Available online: https://www.solaris-shop.com/content/SW300%20Plus%20Mono%20Specs.pdf (accessed on 6 July 2018).
- NREL. Tech-Lcoe-Re-Cost-Est www.nrel.gov 2016. Available online: https://www.nrel.gov/analysis/tech-lcoe-re-cost-est.html (accessed on 30 September 2018).
- City and County of Denver. Rfq-Nwc-Stockyards www.denvergov.org. 2018 n.d. Available online: https://www.denvergov.org/content/denvergov/en/contract-administration/current-bidding-opportunities/2018/rfq-nwc-stockyards.html (accessed on 31 July 2018).
- Bi, X.; Naimi, L.J.; Narayan, S.; Mani, S.; Womac, A.R.; Hoque, M.; Womac, A.R.; Narayan, S.; Ye, X.P. Bulk density of wet and dry wheat straw and switchgrass particles. Appl. Eng. Agric. 2013, 24, 351–358. [Google Scholar] [CrossRef]
- Community Power Corporation. Biomax-Systems @ www.gocpc.com 2016. Available online: http://www.gocpc.com/biomax-systems.html (accessed on 30 October 2018).
- McFarland, W. (Chief Executive Officer of Biomax-Systems Inc.). Phone Conversation, 30 October 2018. [Google Scholar]
- Kim, J.; Kim, J.; Kim, J.; Yoo, C.; Moon, I. A simultaneous optimization approach for the design of wastewater and heat exchange networks based on cost estimation. J. Clean Prod. 2009, 17, 162–171. [Google Scholar] [CrossRef]
- Cole, W.; Frazier, A.W.; Cole, W.; Frazier, A.W. Cost Projections for Utility-Scale Battery Storage Cost Projections for Utility-Scale Battery Storage; NREL/TP-6A20-73222; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2019. [Google Scholar]
- Enphase IQ Battery 10T Datasheet, n.d. Available online: https://enphase.com/installers/storage/iq-battery-10t (accessed on 21 November 2021).
- Schimpe, M.; Naumann, M.; Truong, N.; Hesse, H.C.; Santhanagopalan, S.; Saxon, A.; Jossen, A. Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis. Appl. Energy 2018, 210, 211–229. [Google Scholar] [CrossRef]
- Dobos, A.P. PVWatts Version 5 Manual; NREL/TP-6A20-62641; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2014; p. 3. [Google Scholar] [CrossRef] [Green Version]
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef] [Green Version]
- NREL. Equations and Variables in ATB. Annual Technology Baseline 2020. Available online: https://atb.nrel.gov/electricity/2020/equations-variables.php (accessed on 2 December 2020).
- Short, W.; Packey, D.; Holt, T. A manual for the economic evaluation of energy efficiency and renewable energy technologies. Renew. Energy 1995, 95, 73–81. [Google Scholar] [CrossRef] [Green Version]
- NREL. Electricity ATB Data Download. Annual Technology Baseline 2020. Available online: https://atb.nrel.gov/electricity/2020/data.php (accessed on 2 December 2020).
- NREL. Archives: NREL ATB and Standard Scenarios. Annual Technology Baseline 2020. Available online: https://atb.nrel.gov/electricity/archives.html (accessed on 2 December 2020).
- Peterson, K.; Torcellini, P.; Grant, R. A Common Definition for Zero Energy Buildings; DOE/EE-1247; US Department of Energy: Washington, DC, USA, 2015; p. 22. [Google Scholar]
- U.S. DOE. Commercial Building Benchmarks Energy Use Intensities. 2009. Available online: https://www.energy.gov/sites/prod/files/2013/12/f5/all_euis.pdf (accessed on 6 December 2021).
- U.S. DOE. Commercial Iecc-Building-Models-Warehouse-Non-Refrigerated @ www.energycodes.gov 2015. Available online: https://www.energycodes.gov/commercialiecc-building-models-warehouse-non-refrigerated (accessed on 21 July 2018).
- Patsios, C.; Wu, B.; Chatzinikolaou, E.; Rogers, D.J.; Wade, N.; Brandon, N.P.; Taylor, P. An integrated approach for the analysis and control of grid connected energy storage systems. J. Energy Storage 2016, 5, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Annual Energy Outlook 2019 with Projections to 2050; U.S. Energy Information Administration: Washington, DC, USA, 2019; Available online: https://www.eia.gov/outlooks/archive/aeo19/ (accessed on 6 December 2021).
- U.S. Energy Information Administration. Wholesale Electricity and Natural Gas Market Data @ www.eia.gov n.d. Available online: https://www.eia.gov/electricity/wholesale/ (accessed on 20 April 2020).
PV | HP | CHP | |||
---|---|---|---|---|---|
Normal | 2× Summer | Base | Large | ||
Capacity [kW] | 10,200 | 3600 | 155 | 710 | |
Electric Generation [×106 MJ] | 53 | (1.6) | (1.5) | 2.8 | 9.9 |
Heat Generation [×106 MJ] | - | 7.5 | 7.7 | 2.7 | 7.9 |
Total Energy Generation [×106 MJ] | 53 | 5.9 | 6.2 | 5.5 | 18 |
PV Only | PV/HP | PV/CHP | |||||
---|---|---|---|---|---|---|---|
Load Profile | Normal | 2× Summer | Normal | 2× Summer | Normal | 2× Summer | |
Annual Load [×106 MJ] | Electric | 44 | 54 | 45 | 55 | 44 | 54 |
Natural Gas | 13 | 14 | 5.5 | 6.0 | 13 | 14 | |
Total | 57 | 67 | 51 | 61 | 57 | 67 | |
Annual Generation [×106 MJ] | Electric | 53 | 53 | 53 | 53 | 56 | 63 |
Heat | - | - | - | - | 2.7 | 7.9 | |
Total | 53 | 53 | 53 | 53 | 58 | 71 | |
Annual Net-Energy [×106 MJ] | Electric | (9.3) | 0.9 | (7.7) | 2.4 | (12) | (9.0) |
Natural Gas | 13 | 14 | 5.5 | 6.0 | 10 | 5.7 | |
Total | 3.7 | 15 | (2.2) | 8.4 | (1.8) | (3.2) | |
Total Generation/Load Ratio | 94% | 78% | 104% | 86% | 103% | 105% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saarloos, B.A.; Quinn, J.C. Net-Zero Energy Districts and the Grid: An Energy-Economic Feasibility Case-Study of the National Western Center in Denver, CO, USA. Buildings 2021, 11, 638. https://doi.org/10.3390/buildings11120638
Saarloos BA, Quinn JC. Net-Zero Energy Districts and the Grid: An Energy-Economic Feasibility Case-Study of the National Western Center in Denver, CO, USA. Buildings. 2021; 11(12):638. https://doi.org/10.3390/buildings11120638
Chicago/Turabian StyleSaarloos, Benjamin A., and Jason C. Quinn. 2021. "Net-Zero Energy Districts and the Grid: An Energy-Economic Feasibility Case-Study of the National Western Center in Denver, CO, USA" Buildings 11, no. 12: 638. https://doi.org/10.3390/buildings11120638
APA StyleSaarloos, B. A., & Quinn, J. C. (2021). Net-Zero Energy Districts and the Grid: An Energy-Economic Feasibility Case-Study of the National Western Center in Denver, CO, USA. Buildings, 11(12), 638. https://doi.org/10.3390/buildings11120638