Seismic Vulnerability Assessment and Strengthening of Heritage Timber Buildings: A Review
Abstract
:1. Introduction
2. Systematic Literature Review
3. Numerical Modeling Methods
3.1. Timber Frame Buildings
3.2. Log Houses
3.3. Post and Beam
4. Seismic Analysis Methods
5. Seismic Strengthening Methods
5.1. Wooden Components
5.2. Steel Components
5.3. Composite Materials
5.4. Damper
5.5. Bolt and Screw
5.6. Shape Memory Alloys (SMA)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, T.P.; Jasieńko, J.; Hamrol-Bielecka, K. In situ assessment of structural timber using the resistance drilling method—Evaluation of usefulness. Constr. Build. Mater. 2016, 102, 403–415. [Google Scholar] [CrossRef]
- Riggio, M.; D’Ayala, D.; Parisi, M.A.; Tardini, C. Assessment of heritage timber structures: Review of standards, guidelines and procedures. J. Cult. Heritage 2018, 31, 220–235. [Google Scholar] [CrossRef]
- Palma, P.; Steiger, R. Structural health monitoring of timber structures—Review of available methods and case studies. Constr. Build. Mater. 2020, 248, 118528. [Google Scholar] [CrossRef]
- Tannert, J.B.D. Reinforcement of Timber Elements in Existing Structures; (RILEM State-of-the-Art Reports); Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Crowley, H.; Rodrigues, D.; Silva, V. The European seismic risk model 2020 (ESRM 2020). In Proceedings of the ICONHIC 2019—2nd International Conference on Natural Hazards & Infrastructure, Chania, Greece, 23–26 June 2019; Available online: https://sigarra.up.pt/reitoria/en/pub_geral.pub_view?pi_pub_base_id=387873 (accessed on 10 November 2021).
- Stepinac, M.; Šušteršič, I.; Gavrić, I.; Rajčić, V. Seismic Design of Timber Buildings: Highlighted Challenges and Future Trends. Appl. Sci. 2020, 10, 1380. [Google Scholar] [CrossRef] [Green Version]
- Shabani, A.; Kioumarsi, M.; Plevris, V.; Stamatopoulos, H. Structural Vulnerability Assessment of Heritage Timber Buildings: A Methodological Proposal. Forests 2020, 11, 881. [Google Scholar] [CrossRef]
- Ceccotti, A.; Sandhaas, C. A Proposal for a Procedure to Evaluate the Seismic Vulnerability of Historic Timber Frame Buildings. In Historical Earthquake-Resistant Timber Frames in the Mediterranean Area; Ruggieri, N., Tampone, G., Zinno, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 105–118. [Google Scholar]
- Larsen, K.E.; Marstein, N. Conservation of Historic Timber Structures. An Ecological Approach; Riksantikvaren: Oslo, Norway, 2016. [Google Scholar]
- Quinn, N.; D’Ayala, D.; Descamps, T. Structural characterisation and Numerical Modelling of Historic Quincha Walls. Int. J. Arch. Heritage 2016, 10, 300–331. [Google Scholar] [CrossRef]
- Vasconcelos, G.; Lourenço, P.B.; Poletti, E. An overview on the seismic behaviour of timber frame structures. In Historical Earthquake-Resistant Timber Frames in the Mediterranean Area; Springer: Berlin/Heidelberg, Germany, 2015; pp. 119–132. [Google Scholar]
- Shabani, A.; Plevris, V.; Kioumarsi, M. A Comparative Study on the Initial In-plane Stiffness of Masonry Walls with Openings. In Proceedings of the World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 1 October 2021. [Google Scholar]
- Pagani, M.; Garcia-Pelaez, J.; Gee, R.; Johnson, K.; Poggi, V.; Silva, V.; Simionato, M.; Styron, R.; Viganò, D.; Danciu, L.; et al. The 2018 version of the Global Earthquake Model: Hazard component. Earthq. Spectra 2020, 36, 226–251. [Google Scholar] [CrossRef]
- Vieux-Champagne, F.; Sieffert, Y.; Grange, S.; Polastri, A.; Ceccotti, A.; Daudeville, L. Experimental analysis of seismic resistance of timber-framed structures with stones and earth infill. Eng. Struct. 2014, 69, 102–115. [Google Scholar] [CrossRef]
- Pagani, M.; Garcia-Pelaez, J.; Gee, R.; Johnson, K.; Poggi, V.; Styron, R.; Weatherill, G.; Simionato, M.; Viganò, D.; Danciu, L.; et al. Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1–December 2018). Technical Report. 2018. Available online: https://www.globalquakemodel.org/gem-maps/global-earthquake-hazard-map (accessed on 8 November 2021). [CrossRef]
- Parisse, F.; Poletti, E.; Dutu, A.; Rodrigues, H. Numerical modeling of the seismic performance of Romanian timber-framed masonry walls. Eng. Struct. 2021, 239, 112272. [Google Scholar] [CrossRef]
- Nevell, M. Newton Hall and the cruck buildings of Northwest England. Centre for Applied Archaeology; University of Salford: Salford, UK, 2010. [Google Scholar]
- Shabani, A.; Hosamo, H.; Plevris, V.; Kioumarsi, M. A Preliminary Structural Survey of Heritage Timber Log Houses in Tønsberg, Norway. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions, SAHC 2021, Barcelona, Spain, 30 September 2021. [Google Scholar]
- Klein, A.; Grabner, M. Analysis of Construction Timber in Rural Austria: Wooden Log Walls. Int. J. Arch. Heritage 2014, 9, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cai, J.; Zhang, J. Research on the Characteristics of Timber Frames of Tingtang in Residences of Ming and Qing Dynasties in Shanghai. Int. J. Arch. Heritage 2018, 14, 196–207. [Google Scholar] [CrossRef]
- Wang, J.; He, J.; Yang, N.; Yang, Q. Study on Aseismic Characteristics of Tibetan Ancient Timber Structure. Adv. Mater. Sci. Eng. 2017, 2017, 8186768. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, Y.F.; Shi, X.; Zhao, Y.; Li, T. Hysteresis behavior of traditional timber structures by full-scale tests. Adv. Struct. Eng. 2017, 21, 287–299. [Google Scholar] [CrossRef]
- Li, W.; Zhao, J.; Ma, G.; Chen, W. Experimental study on the seismic performance of a double-span traditional timber frame. Eng. Struct. 2015, 98, 141–150. [Google Scholar] [CrossRef]
- Çalik, I.; Bayraktar, A.; Türker, T.; Ashour, A. Experimental Dynamic Behaviors and Empirical Frequency Formulas for Historical Timber Mosques. Struct. Eng. Int. 2019, 29, 404–411. [Google Scholar] [CrossRef]
- Duţu, A.; Sakata, H.; Yamazaki, Y. Experimental study on timber-framed masonry structures. In Historical Earthquake-Resistant Timber Frames in the Mediterranean Area; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–81. [Google Scholar]
- Sieffert, Y.; Vieux-Champagne, F.; Grange, S.; Garnier, P.; Duccini, J.; Daudeville, L. Full-field measurement with a digital image correlation analysis of a shake table test on a timber-framed structure filled with stones and earth. Eng. Struct. 2016, 123, 451–472. [Google Scholar] [CrossRef]
- Branco, J.M.; Lourenço, P.B.; Aranha, C.A. Seismic analysis of a 2-storey log house. Adv. Mater. Res. 2013, 778, 478–485. [Google Scholar] [CrossRef]
- Xue, J.; Xu, D.; Qi, L. Experimental seismic response of a column-and-tie wooden structure. Adv. Struct. Eng. 2019, 22, 1909–1922. [Google Scholar] [CrossRef]
- Xue, J.; Xu, D. Shake table tests on the traditional column-and-tie timber structures. Eng. Struct. 2018, 175, 847–860. [Google Scholar] [CrossRef]
- Wu, Y.J.; Bin Song, X.; Luo, L. Experimental Investigation on the Seismic Performance of a Chinese Traditional Wooden Pagoda. Appl. Mech. Mater. 2016, 858, 119–124. [Google Scholar] [CrossRef]
- Shabani, A.; Kioumarsi, M.; Zucconi, M. State of the art of simplified analytical methods for seismic vulnerability assessment of unreinforced masonry buildings. Eng. Struct. 2021, 239, 112280. [Google Scholar] [CrossRef]
- Bednarz, L.J.; Jasieńko, J.; Rutkowski, M.; Nowak, T. Strengthening and long-term monitoring of the structure of an historical church presbytery. Eng. Struct. 2014, 81, 62–75. [Google Scholar] [CrossRef]
- Stepinac, M.; Rajčić, V.; Barbalić, J. Inspection and condition assessment of existing timber structures. J. Croat. Assoc. Civ. Eng. 2017, 69, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Perković, N.; Stepinac, M.; Rajčić, V.; Barbalić, J. Assessment of Timber Roof Structures before and after Earthquakes. Buildings 2021, 11, 528. [Google Scholar] [CrossRef]
- Parisi, M.A.; Piazza, M. Restoration and Strengthening of Timber Structures: Principles, Criteria, and Examples. Pr. Period. Struct. Des. Constr. 2007, 12, 177–185. [Google Scholar] [CrossRef]
- FP 1402, COST Action, Basis of Structural Timber Design. From Research to Standards. 2019. Available online: https://webarchiv.typo3.tum.de/TUM/costfp1402/home/index.html (accessed on 12 December 2021).
- D’Ayala, D.; Branco, J.M.; Riggio, M.; Harte, A.; Kurz, J.; Descamps, T. Assessment, reinforcement and monitoring of timber structures: FPS Cost Action FP1101. In Proceedings of the 2014: World Conference on Timber Engineering (WCTE), Quebec, QC, Canada, 10–14 August 2014. [Google Scholar]
- Cruz, H.; Yeomans, D.; Tsakanika, E.; Macchioni, N.; Jorissen, A.; Touza, M.; Mannucci, M.; Lourenco, P. Guidelines for On-Site Assessment of Historic Timber Structures. Int. J. Arch. Heritage 2014, 9, 277–289. [Google Scholar] [CrossRef]
- Sørensen, J.D.; Dietsch, P.; Kirkegaard, P.H.; Andersen, D.; Neves, L.; Branco, J.; Branco, J.; Zhang, G.; Fink, G.; Steiger, R.; et al. COST Action E55 Modelling of the Performance of Timber Structures; Shaker: Aachen, Belgium, 2010. [Google Scholar]
- Harte, A.M.; Dietsch, P. Reinforcement of Timber Structures—A State-of-the-Art Report; Shaker: Düren, Germany, 2015; ISBN 978-3-8440-3751-7. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Sandak, J.; Riggio, M.; Ruggieri, N.; Sandak, A. Damage progression analysis in a historical timber framed wall under cyclic loads through an image-based tracking method. Constr. Build. Mater. 2018, 199, 483–491. [Google Scholar] [CrossRef]
- Fritsch, E.; Sieffert, Y.; Algusab, H.; Grange, S.; Garnier, P.; Daudeville, L. Numerical analysis on seismic resistance of a two-story timber-framed structure with stone and earth infill. Int. J. Arch. Heritage 2018, 13, 820–840. [Google Scholar] [CrossRef]
- Dutu, A.; Yamazaki, Y.; Sakata, H. Shear spring model proposed for seismic evaluation of a timber framed masonry infilled wall. Eng. Struct. 2018, 167, 671–682. [Google Scholar] [CrossRef]
- Xie, Q.; Tong, Y.; Zhang, L.; Li, S.; Wang, L. Seismic Behavior of Chinese Traditional Timber Frames with Masonry Infill Wall: Experimental Tests and Hysteretic Model. Int. J. Arch. Heritage 2019, 15, 1130–1144. [Google Scholar] [CrossRef]
- Guerra, S. Numerical Modelling of the Seismic Behavior of Timber-Framed Structures Based on Macro-Rlements. 2017. Issued Date: 2017. Available online: http://hdl.handle.net/1822/62324 (accessed on 1 November 2021).
- Lukic, R.; Poletti, E.; Rodrigues, H.; Vasconcelos, G. Numerical modelling of the cyclic behavior of timber-framed structures. Eng. Struct. 2018, 165, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Kouris, L.A.S.; Kappos, A. Detailed and simplified non-linear models for timber-framed masonry structures. J. Cult. Heritage 2012, 13, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Chand, B.; Kaushik, H.B.; Das, S. Lateral Load Behavior of Traditional Assam-Type Wooden House. J. Struct. Eng. 2019, 145, 04019072. [Google Scholar] [CrossRef]
- Ahmad, N.; Ali, Q.; Umar, M. Simplified engineering tools for seismic analysis and design of traditional Dhajji-Dewari structures. Bull. Earthq. Eng. 2012, 10, 1503–1534. [Google Scholar] [CrossRef]
- Grossi, P.; Sartori, T.; Giongo, I.; Tomasi, R. Analysis of timber log-house construction system via experimental testing and analytical modelling. Constr. Build. Mater. 2016, 102, 1127–1144. [Google Scholar] [CrossRef]
- Branco, J.; Araújo, J.P. Structural behaviour of log timber walls under lateral in-plane loads. Eng. Struct. 2012, 40, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Sciomenta, M.; Rinaldi, V.; Bedon, C.; Fragiacomo, M. Application of Modal-Displacement Based Design Method to Multi-Story Timber Blockhaus Structures. Appl. Sci. 2020, 10, 3889. [Google Scholar] [CrossRef]
- Bedon, C.; Rinaldin, G.; Fragiacomo, M. Non-linear modelling of the in-plane seismic behaviour of timber Blockhaus log-walls. Eng. Struct. 2015, 91, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Sciomenta, M.; Bedon, C.; Fragiacomo, M.; Luongo, A. Shear Performance Assessment of Timber Log-House Walls under In-Plane Lateral Loads via Numerical and Analytical Modelling. Buildings 2018, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.J.; Leichti, R.J.; Miller, T.H. Finite-element modeling of log wall lateral force resistance. For. Prod. J. 2005, 55, 48–54. [Google Scholar]
- Bedon, C.; Rinaldin, G.; Fragiacomo, M.; Noé, S. q-factor estimation for 3D log-house timber buildings via Finite Element analyses. Soil Dyn. Earthq. Eng. 2018, 116, 215–229. [Google Scholar] [CrossRef]
- D’Ayala, D.; Tsai, P.H. Seismic vulnerability of historic Dieh–Dou timber structures in Taiwan. Eng. Struct. 2008, 30, 2101–2113. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, L.; Li, S.; Zhou, W.; Wang, L. Cyclic behavior of Chinese ancient wooden frame with mortise–tenon joints: Friction constitutive model and finite element modelling. J. Wood Sci. 2017, 64, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Huan, J.; Ma, N.; Wang, W. Vulnerability Analysis of Ancient Timber Architecture by Considering the Correlation of Different Failure Modes. Math. Probl. Eng. 2018, 2018, 5163472. [Google Scholar] [CrossRef]
- Yeo, S.-Y.; Hsu, M.-F.; Komatsu, K.; Que, Z. Mechanical model for complex brackets system of the Taiwanese traditional Dieh-Dou timber structures. Adv. Struct. Eng. 2016, 19, 65–85. [Google Scholar] [CrossRef] [Green Version]
- Tsai, P.-H.; D’Ayala, D. Performance-based seismic assessment method for Taiwanese historic Dieh-Dou timber structures. Earthq. Eng. Struct. Dyn. 2010, 40, 709–729. [Google Scholar] [CrossRef]
- Chen, L.-K.; Li, S.-C.; Zhao, K.-P.; Chen, Z.-Y.; Song, T.; Zhang, L.; Jang, Z.-J. Experimental and Numerical Investigation on Seismic Performance of One-Way Straight Mortise–Tenon Joints Based on a Novel Method to Simulate Damage of Deteriorated Ancient Chinese Timber Buildings. J. Perform. Constr. Facil. 2020, 34, 04019119. [Google Scholar] [CrossRef]
- Wu, C.; Xue, J.; Zhou, S.; Zhang, F. Seismic Performance Evaluation for a Traditional Chinese Timber-frame Structure. Int. J. Arch. Heritage 2020, 15, 1842–1856. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, D.; Ni, C.; Shen, Y.; Zhao, L. Experiment on Behavior of a New Connector Used in Bamboo (Timber) Frame Structure under Cyclic Loading. Adv. Mater. Sci. Eng. 2018, 2018, 9084279. [Google Scholar] [CrossRef] [Green Version]
- D’Ayala, D.; Meslem, A.; Vamvatsikos, D.; Porter, K.; Rossetto, T. Guidelines for Analytical Vulnerability Assessment: Low/Mid-Rise, GEM Vulnerability and Loss Modelling; Global Earthquake Model (GEM) Foundation: Pavia, Italy, 2015. [Google Scholar]
- Seminar, C. NEHRP Guidelines for the Seismic Rehabilitation of Buildings; FEMA Publication 273; Applied Technology Council: Redwood City, CA, USA, 1997. [Google Scholar]
- Fajfar, P. A Nonlinear Analysis Method for Performance-Based Seismic Design. Earthq. Spectra 2000, 16, 573–592. [Google Scholar] [CrossRef]
- Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings; European Committee for Standardization: Brussels, Belgium, 2005.
- Watson-Lamprey, J.; Abrahamson, N. Selection of ground motion time series and limits on scaling. Soil Dyn. Earthq. Eng. 2006, 26, 477–482. [Google Scholar] [CrossRef]
- Ay, B.; Akkar, S. A procedure on ground motion selection and scaling for nonlinear response of simple structural systems. Earthq. Eng. Struct. Dyn. 2012, 41, 1693–1707. [Google Scholar] [CrossRef]
- Bradley, B.A. A ground motion selection algorithm based on the generalized conditional intensity measure approach. Soil Dyn. Earthq. Eng. 2012, 40, 48–61. [Google Scholar] [CrossRef]
- Wang, Y.; Rosowsky, D.V. Effects of Earthquake Ground Motion Selection and Scaling Method on Performance-Based Engineering of Wood-Frame Structures. J. Struct. Eng. 2014, 140, 04014086. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2001, 31, 491–514. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Applied Incremental Dynamic Analysis. Earthq. Spectra 2004, 20, 523–553. [Google Scholar] [CrossRef]
- Abaqus, G. Dassault Systemes Simulia Corporation; Simulia: Providence, RI, USA, 2021. [Google Scholar]
- CSI. SAP2000. In Computers and Structures; Structural Engineering Company: Berkeley, CA, USA, 2021. [Google Scholar]
- Anand, V.; Kumar, S.S. Seismic Soil-structure Interaction: A State-of-the-Art Review. Structures 2018, 16, 317–326. [Google Scholar] [CrossRef]
- Bedon, C.; Fragiacomo, M. Numerical Investigation of Timber Log-Haus Walls with Steel Dovetail Reinforcements under In-Plane Seismic Loads. Adv. Civ. Eng. 2018, 2018, 6929856. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, C.; Xue, J.; Ma, H. Fast Nonlinear Analysis of Traditional Chinese Timber-Frame Building with Dou-Gon. Int. J. Arch. Heritage 2019, 14, 1252–1268. [Google Scholar] [CrossRef]
- Pejatovic, M.; Sarhosis, V.; Milani, G. Multi-tiered Nepalese temples: Advanced numerical investigations for assessing performance at failure under horizontal loads. Eng. Fail. Anal. 2019, 106, 104172. [Google Scholar] [CrossRef]
- Sha, B.; Xie, L.; Yong, X.; Li, A. Hysteretic behavior of an ancient Chinese multi-layer timber substructure: A full-scale experimental test and analytical model. J. Build. Eng. 2021, 43, 103163. [Google Scholar] [CrossRef]
- Endo, Y.; Hanazato, T. Seismic Analysis of a Three-Tiered Pagoda Temple Affected by the 2015 Gorkha Earthquake. Int. J. Arch. Heritage 2018, 14, 457–470. [Google Scholar] [CrossRef]
- Wu, Y.; Song, X.; Ventura, C.; Lam, F. Rocking effect on seismic response of a multi-story traditional timber pagoda model. Eng. Struct. 2019, 209, 110009. [Google Scholar] [CrossRef]
- Xue, J.; Ren, G.; Zhang, J.; Xu, D. Seismic performance of semi-tenon joints reinforced by steel angle in traditional timber buildings. Adv. Struct. Eng. 2020, 23, 2318–2332. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Z.; Luo, H.; Milani, G.; Abruzzese, D. Behavior of traditional Chinese mortise-tenon joints: Experimental and numerical insight for coupled vertical and reversed cyclic horizontal loads. J. Build. Eng. 2020, 30, 101257. [Google Scholar] [CrossRef]
- Dutu, A.; Sakata, H.; Yamazaki, Y.; Shindo, T. In-Plane Behavior of Timber Frames with Masonry Infills under Static Cyclic Loading. J. Struct. Eng. 2016, 142, 04015140. [Google Scholar] [CrossRef]
- Chang, W.-S.; Hsu, M.-F.; Komatsu, K. A new proposal to reinforce planked timber shear walls. J. Wood Sci. 2011, 57, 493–500. [Google Scholar] [CrossRef]
- Tu, L.; Cui, Z.; Xu, M.; Feng, Y.; Li, T. Experimental study of traditional Chuan-dou frames infilled with wood panels under in-plane cyclic load. J. Build. Eng. 2021, 43, 102854. [Google Scholar] [CrossRef]
- Crayssac, E.; Song, X.; Wu, Y.; Li, K. Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill. Eng. Struct. 2018, 161, 223–230. [Google Scholar] [CrossRef]
- Luo, L.; Song, X.; Wu, H.; Cai, J. Experimental study on mechanical performance of wood pegged semi mortise and tenon connections. In Proceedings of the 14th World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Chang, W.-S.; Komatsu, K.; Hsu, M.-F.; Chen, W.-J. On mechanical behavior of traditional timber shear wall in Taiwan I: Background and theory derivation. J. Wood Sci. 2007, 53, 17–23. [Google Scholar] [CrossRef]
- Chang, W.-S.; Hsu, M.-F.; Komatsu, K.; Chen, W.-J. On mechanical behavior of traditional timber shear wall in Taiwan II: Simplified calculation and experimental verification. J. Wood Sci. 2007, 53, 24–30. [Google Scholar] [CrossRef]
- Jianli, Y. Seismic analysis method considering wall participation for ancient timber frame buildings. J. Build. Struct. 2018, 39, 45–52. [Google Scholar]
- Xie, Q.; Wang, L.; Li, S.; Zhang, L.; Hu, W. Influence of wood infill walls on the seismic performance of Chinese traditional timber structure by shaking table tests. Bull. Earthq. Eng. 2020, 18, 5009–5029. [Google Scholar] [CrossRef]
- Longarini, N.; Crespi, P.; Franchi, A.; Giordano, N.; Ronca, P.; Scamardo, M. Cross-lam roof diaphragm for the seismic retrofitting of historical masonry churches. In Proceedings of the International Masonry Society Conferences, Milan, Italy, 9–11 July 2018. [Google Scholar]
- Mirra, M.; Ravenshorst, G.; de Vries, P.; van de Kuilen, J.-W. An analytical model describing the in-plane behaviour of timber diaphragms strengthened with plywood panels. Eng. Struct. 2021, 235, 112128. [Google Scholar] [CrossRef]
- Gubana, A.; Melotto, M. Cyclic numerical analyses on wood-based in-plane retrofit solutions for existing timber floors. Structures 2021, 33, 1764–1774. [Google Scholar] [CrossRef]
- Gubana, A.; Melotto, M. Experimental tests on wood-based in-plane strengthening solutions for the seismic retrofit of traditional timber floors. Constr. Build. Mater. 2018, 191, 290–299. [Google Scholar] [CrossRef]
- Gubana, A.; Melotto, M. In-Plane Strengthening of Traditional Timber Floors by Means of CLT Panels: Experimental Tests and Numerical Analysis; Pisa University Press: Pisa, Italy, 2017; pp. 185–195. [Google Scholar]
- Steiger, R.; Serrano, E.; Stepinac, M.; Rajčić, V.; O’Neill, C.; McPolin, D.; Widmann, R. Strengthening of timber structures with glued-in rods. Constr. Build. Mater. 2015, 97, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Jockwer, R.; Fink, G.; Köhler, J. Assessment of the failure behaviour and reliability of timber connections with multiple dowel-type fasteners. Eng. Struct. 2018, 172, 76–84. [Google Scholar] [CrossRef]
- Jasieńko, J.; Nowak, T.P. Solid timber beams strengthened with steel plates—Experimental studies. Constr. Build. Mater. 2014, 63, 81–88. [Google Scholar] [CrossRef]
- Verbist, M.; Branco, J.M.; Poletti, E.; Descamps, T.; Lourenco, P.B. Experimentations on the retrofitting of damaged Single Step Joints with Self-Tapping Screws. Mater. Struct. 2018, 51, 106. [Google Scholar] [CrossRef]
- Gonçalves, A.M.; Gomes-Ferreira, J.; Guerreiro, L.; Branco, F. Seismic retrofitting of timber framed walls. Mater. De Construcción 2014, 64, e040. [Google Scholar] [CrossRef] [Green Version]
- Poletti, E.; Vasconcelos, G. Seismic Behaviour and Retrofitting of Timber Frame Walls. Adv. Mater. Res. 2013, 778, 706–713. [Google Scholar] [CrossRef]
- Poletti, E.; Vasconcelos, G.; Branco, J.; Koukouviki, A.M. Performance evaluation of traditional timber joints under cyclic loading and their influence on the seismic response of timber frame structures. Constr. Build. Mater. 2016, 127, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Poletti, E.; Vasconcelos, G.; Jorge, M. Application of near surface mounted (NSM) strengthening technique to traditional timber frame walls. Constr. Build. Mater. 2015, 76, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Yan, W. Aseismic behaviors of ancient Chinese structures strengthened by different methods. Stud. Conserv. 2014, 60, 384–392. [Google Scholar] [CrossRef]
- Branco, J.; Piazza, M.; Cruz, P. Experimental evaluation of different strengthening techniques of traditional timber connections. Eng. Struct. 2011, 33, 2259–2270. [Google Scholar] [CrossRef] [Green Version]
- Drdácký, M.; Urushadze, S. Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings 2019, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Corradi, M.; DI Schino, A.; Borri, A.; Rufini, R. A review of the use of stainless steel for masonry repair and reinforcement. Constr. Build. Mater. 2018, 181, 335–346. [Google Scholar] [CrossRef]
- Corradi, M.; Osofero, A.I.; Borri, A. Repair and Reinforcement of Historic Timber Structures with Stainless Steel—A Review. Metals 2019, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Schober, K.-U.; Harte, A.; Kliger, R.; Jockwer, R.; Xu, Q.; Chen, J.-F. FRP reinforcement of timber structures. Constr. Build. Mater. 2015, 97, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Cruz, H.; Moura, J.P.; Machado, J.S. The Use of FRP in the Strengthening of Timber Reinforced Masonry Load-Bearing Walls; Historical Constructions: Guimarães, Portugal, 2001; Volume 847. [Google Scholar]
- Hassan, M.A.; Usman, M.; Hanif, A.; Farooq, H.; Ahmed, J. Improving structural performance of timber wall panels by inexpensive FRP retrofitting techniques. J. Build. Eng. 2019, 27, 101004. [Google Scholar] [CrossRef]
- Corradi, M.; Vemury, C.M.; Edmondson, V.; Poologanathan, K.; Nagaratnam, B. Local FRP reinforcement of existing timber beams. Compos. Struct. 2020, 258, 113363. [Google Scholar] [CrossRef]
- Corradi, M.; Vo, T.P.; Poologanathan, K.; Osofero, A.I. Flexural behaviour of hardwood and softwood beams with mechanically connected GFRP plates. Compos. Struct. 2018, 206, 610–620. [Google Scholar] [CrossRef] [Green Version]
- Brol, J.; Wdowiak-Postulak, A. Old Timber Reinforcement with FRPs. Materials 2019, 12, 4197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Ma, S.; Han, X. Study on the flexural behavior of poplar beams externally strengthened by BFRP strips. J. Wood Sci. 2020, 66, 1–13. [Google Scholar] [CrossRef]
- Corradi, M.; Borri, A.; Righetti, L.; Speranzini, E. Uncertainty analysis of FRP reinforced timber beams. Compos. Part B Eng. 2017, 113, 174–184. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Nardon, F.; Garbin, E.; Panizza, M. Multi-scale characterization of moisture and thermal cycle effects on composite-to-timber strengthening. Constr. Build. Mater. 2016, 102, 1070–1083. [Google Scholar] [CrossRef]
- Hoseinpour, H.; Valluzzi, M.R.; Garbin, E.; Panizza, M. Analytical investigation of timber beams strengthened with composite materials. Constr. Build. Mater. 2018, 191, 1242–1251. [Google Scholar] [CrossRef]
- Ghanbari Ghazijahani, T.; Jiao, H.; Holloway, D. Composite Timber Beams Strengthened by Steel and CFRP. J. Compos. Constr. 2017, 21, 04016059. [Google Scholar] [CrossRef]
- Branco, M.; Gonçalves, A.; Guerreiro, L.; Ferreira, J. Cyclic behavior of composite timber-masonry wall in quasi-dynamic conditions reinforced with superelastic damper. Constr. Build. Mater. 2014, 52, 166–176. [Google Scholar] [CrossRef]
- Xue, J.; Wu, C.; Zhang, X.; Qi, Z. Experimental and numerical analysis on seismic performance of straight-tenon joints reinforced with friction damper. Struct. Control. Health Monit. 2020, 27, e2613. [Google Scholar] [CrossRef]
- Xue, J.; Wu, C.; Zhang, X.; Qi, Z. Experimental and numerical study of mortise-tenon joints reinforced with innovative friction damper. Eng. Struct. 2020, 230, 111701. [Google Scholar] [CrossRef]
- Izzi, M.; Polastri, A. Low cycle ductile performance of screws used in timber structures. Constr. Build. Mater. 2019, 217, 416–426. [Google Scholar] [CrossRef]
- Schiro, G.; Giongo, I.; Sebastian, W.; Riccadonna, D.; Piazza, M. Testing of timber-to-timber screw-connections in hybrid configurations. Constr. Build. Mater. 2018, 171, 170–186. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, H.; Jung, K.; Harris, R.; Chang, W.-S. Screw reinforcement on dowel-type moment-resisting connections with cracks. Constr. Build. Mater. 2019, 215, 59–72. [Google Scholar] [CrossRef]
- Song, X.; Li, K.; Crayssac, E.; Wu, Y. Lateral Performance of Traditional Heavy Timber Frames with Mortise-Tenon Joints Retrofitted Using Self-Tapping Screws. J. Struct. Eng. 2018, 144, 04018187. [Google Scholar] [CrossRef]
- Vasconcelos, G. Seismic behaviour of traditional half-timbered walls: Cyclic tests and strengthening solutions. In Proceedings of the Structural Analysis of Historical Constructions, Wroclaw, Poland, 15–17 October 2012. [Google Scholar]
- Poletti, E.; Vasconcelos, G.; Jorge, M. Full-Scale Experimental Testing of Retrofitting Techniques in Portuguese “Pombalino” Traditional Timber Frame Walls. J. Earthq. Eng. 2013, 18, 553–579. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Wang, T.-H.; Chang, W.-S. Static behaviour of a two-tiered Dou-Gong system reinforced by super-elastic alloy. Proc. Inst. Civ. Eng. Eng. Hist. Heritage 2019, 172, 164–173. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, L.; Miao, Z.; Zhou, W.; Li, S. Lateral Behavior of Traditional Chinese Timber-Frames Strengthened with Shape-Memory Alloy: Experiments and Analytical Model. J. Struct. Eng. 2020, 146, 04020083. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, L.; Zhou, W.; Wang, L.; Zhou, T. Cyclical behavior of timber mortise-tenon joints strengthened with shape memory alloy: Experiments and moment-rotation model. Int. J. Arch. Heritage 2018, 13, 1209–1222. [Google Scholar] [CrossRef]
- Xue, J.; Wu, C.; Zhang, X.; Zhang, Y. Experimental study on seismic behavior of mortise-tenon joints reinforced with shape memory alloy. Eng. Struct. 2020, 218, 110839. [Google Scholar] [CrossRef]
- Xue, J.; Wu, C.; Zhang, X.; Zhang, Y. Effect of pre-tension in superelastic shape memory alloy on cyclic behavior of reinforced mortise-tenon joints. Constr. Build. Mater. 2020, 241, 118136. [Google Scholar] [CrossRef]
- Huang, H.; Chang, W.-S. Seismic resilience timber connection-adoption of shape memory alloy tubes as dowels. Struct. Control. Health Monit. 2017, 24, e1980. [Google Scholar] [CrossRef] [Green Version]
Publication | Documents |
---|---|
Engineering Structures | 28 |
International Journal of Architectural Heritage | 24 |
Construction and Building Materials | 15 |
Forest Products Journal | 7 |
Proceedings of The Institution of Civil Engineers: Structures and Buildings | 7 |
Type of the Structure | Software | Model Scale | Analysis Type | Analysis Purpose | Reference |
---|---|---|---|---|---|
Log house | ABAQUS | Structural component | Cyclic | Validation | [54] |
SAP2000 | Structural component | Cyclic and Monotonic | Validation | [51] | |
SAP2000 | Structural component and full-scale | Cyclic, Monotonic, and simplified methods | Validation and a case study | [52] | |
ABAQUS | Structural component | Monotonic | Validation and parametric study | [55] | |
ABAQUS | Structural component | Monotonic | Validation and parametric study | [79] | |
ABAQUS | Full-scale | Pushover | Case study | [53] | |
ABAQUS | Full-scale | Nonlinear Dynamic | Validation and parametric study | [57] | |
SAP2000 | Full-scale | Linear Dynamic | Validation | [27] | |
Post and beam | ALGOR | Structural component and full-scale | Pushover | Validation and case study | [58] |
Unmentioned | Structural component | Cyclic | Validation | [63] | |
ABAQUS | Structural component | Cyclic | Validation | [59] | |
ANSYS | Full-scale | Nonlinear Dynamic | Case study | [60] | |
ALGOR | Full-scale | Pushover and Nonlinear Dynamic | Case study | [62] | |
ABAQUS | Full-scale | Nonlinear Dynamic | Case study | [80] | |
ANSYS | Full-scale | Nonlinear Dynamic | Case study | [64] | |
ABAQUS | Full-scale | Linear Static, Nonlinear Static and Nonlinear Dynamic | Case study | [81] | |
OpenSees | Structural component | Cyclic | Validation | [82] | |
DIANA FEA | Full-scale | Nonlinear Dynamic and Pushover | Case study | [83] | |
OpenSees | Full-scale | Nonlinear Dynamic | Case study | [84] | |
ABAQUS | Structural component | Monotonic | Validation and parametric study | [85] | |
SAP2000 | Structural component | Cyclic | Validation and a case study | [23] | |
ABAQUS | Structural component | Cyclic | Validation | [86] | |
Timber frame | ATLAS | Full-scale | Nonlinear Dynamic | Case study | [43] |
OpenSees | Structural component | Cyclic and pushover | Validation and parametric study | [47] | |
SAP2000 | Structural component | Monotonic | Validation | [44] | |
ANSYS | Structural component and full-scale | Monotonic and Nonlinear static | Validation and a case study | [48] | |
Autodesk Simulation Multiphysics | Structural component and full-scale | Cyclic and Pushover | Validation and a case study | [10] | |
SAP2000 | Structural component | Monotonic | Validation | [49] | |
SAP2000 | Structural component | Nonlinear static and dynamic | Validation and a case study | [50] | |
OpenSees | Structural component | Cyclic | Validation | [16] | |
FINAL v11 | Structural component | Monotonic and Cyclic | Validation | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabani, A.; Alinejad, A.; Teymouri, M.; Costa, A.N.; Shabani, M.; Kioumarsi, M. Seismic Vulnerability Assessment and Strengthening of Heritage Timber Buildings: A Review. Buildings 2021, 11, 661. https://doi.org/10.3390/buildings11120661
Shabani A, Alinejad A, Teymouri M, Costa AN, Shabani M, Kioumarsi M. Seismic Vulnerability Assessment and Strengthening of Heritage Timber Buildings: A Review. Buildings. 2021; 11(12):661. https://doi.org/10.3390/buildings11120661
Chicago/Turabian StyleShabani, Amirhosein, Ali Alinejad, Mohammad Teymouri, André Nascimento Costa, Mahgol Shabani, and Mahdi Kioumarsi. 2021. "Seismic Vulnerability Assessment and Strengthening of Heritage Timber Buildings: A Review" Buildings 11, no. 12: 661. https://doi.org/10.3390/buildings11120661
APA StyleShabani, A., Alinejad, A., Teymouri, M., Costa, A. N., Shabani, M., & Kioumarsi, M. (2021). Seismic Vulnerability Assessment and Strengthening of Heritage Timber Buildings: A Review. Buildings, 11(12), 661. https://doi.org/10.3390/buildings11120661