Effect of Needle Type, Number of Layers on FPAFC Composite against Low-Velocity Projectile Impact
Abstract
:1. Introduction
Projectile Impact on Concrete
2. Significance of Study
3. Materials and Methods
3.1. Raw Materials
3.2. Mixing Composition
3.3. Specimen Preparation
3.4. Projectile Impact Testing Device
4. Results and Discussion
4.1. Compressive Strength
4.2. Failure Impact Number
4.2.1. Effect of Needle Type on the Failure Impact Number
4.2.2. Effect of Fibre Type and Fibre Hybridization on the Failure Impact Number
4.2.3. Effect of Number of Layers on the Failure Impact Number
4.3. Damage of Targets under Different Projectile
4.3.1. Top Damage Area
4.3.2. Bottom Damage Area
4.3.3. Damage Ratio
4.3.4. Penetration Depth
4.3.5. Failure Pattern
5. Assessment of Mass Expulsion from Top Surface
6. Conclusions
- (1)
- For fibrous specimens, using the compound bevel (CB) projectile needle resulted in the lowest impact numbers for all single, double and triple-layer specimens compared to convex edge (CE) and hollow edge (HE) projectiles regardless of the fibre type, content and distribution. For instance, for the single-layer specimens with 2.4% SF, the recorded impact numbers were 35, 48 and 50 under CB, CE and HE projectile needles, respectively. Thus, the use of CB projectile needle having tapered end with longer sharpened tip resulted in a quicker deterioration and hence accelerated the impact failure compared to CE and HE ones.
- (2)
- For the single-layer specimens, the steel fibre (SF) reinforced specimens exhibited higher percentage improvements in the retained impact number by 2.2 to 2.7 times compared to the polypropylene fibre (PF) ones, while their recorded impact numbers were approximately three to six times those of reference plain specimens. This behaviour is attributed to the higher tensile strength of SF compared to PF and its deformed shape that allowed the fibres to absorb higher tensile stresses across the cracks and prevented the brittle anchorage bond failure. For the same reason, the double and triple-layer specimens with higher content of SF in the top layer exhibited higher resistance under the repeated projectile impacts compared to the other fibre distributions. This leads to the conclusion that the top layer is the first shield against the concentrated surface impacts; hence, the better reinforcement of this layer using SF would result in an optimum impact performance.
- (3)
- The projectile needle shape influences the damaged area at the top and bottom surfaces. All CB projectile targets had the greatest damage area. Moreover, most FPAFC objects tested under HE projectiles had the second-highest damaged area, followed by CE projectiles. Targets tested under CE and HE projectiles showed no apparent pattern in the damaged area. Triple-layer targets showed a favourable implication in reducing the damaged area with increased failure impact than double-layer targets. A small damage area was observed in PAC targets irrespective of needle type, which tended to break the targets into two pieces. However, fibrous composite targets experienced punctured holes rather than breaking into two pieces.
- (4)
- Repeated projectile impacts increased the penetration depth in all targets. Targets were more resistant to CE and HE projectile penetrations than CB. Target resistance to the penetration of CE and HE projectiles was similar, with a slight variation in impact failure number. Repeated hits did not bend any projectiles; instead, more significant scratches on the body surface indicated higher body mass degradation. SF targets with single, double, and triple layers showed outstanding resistance to penetration.
- (5)
- Three different types of failure patterns were noticed in the fibrous targets irrespective of projectile needle; penetration in the top surface, followed by a reduction in the damaged area during the initial impacts, an increase in penetration depth caused by repeated projectiles, a specific manifestation of the failure pattern on the bottom surface which punctured holes and spread with a wider diameter. At the same time, this failure pattern was not noticed in the reference targets (PAC).
- (6)
- For predicting the mass expelled from the top surface of the targets, a single formulation has been used. The maximum percentage difference between the experimental and predicted values was 9.24 for CB, 10.79 for CE, and 9.6 for HE projectiles, hitting the coefficient of determination greater than 0.950. Thus, the findings of the experiments and analytical model are reasonably satisfactory.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, N.; Murali, G. Research on flexure and impact performance of functionally-graded two-stage fibrous concrete beams of different sizes. Constr. Build. Mater. 2021, 288, 123138. [Google Scholar] [CrossRef]
- Rhee, H.; Horstemeyer, M.F.; Hwang, Y.; Lim, H.; El Kadiri, H.; Trima, W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites. Mater. Sci. Eng. 2009, 29, 2333–2339. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.-Y.; Lin, A.Y.-M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef] [Green Version]
- Sachs, C.; Fabritius, H.-O.; Raabe, D. Experimental investigation of the elastic–plastic deformation of mineralized lobster cuticle by digital image correlation. J. Struct. Biol. 2006, 155, 409–425. [Google Scholar] [CrossRef]
- Seki, Y.; Kad, B.; Benson, D.; Meyers, M.A. The toucan beak: Structure and mechanical response. Mater. Sci. Eng. C 2006, 26, 1412–1420. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, Z.-B.; Li, W.; Zhu, M.-H. Understanding hydration effects on mechanical and impacting properties of turtle shell. J. Mech. Behav. Biomed. Mater. 2018, 78, 116–123. [Google Scholar] [CrossRef]
- Ong, C.W.R.; Zhang, M.-H.; Du, H.; Pang, S.D. Functionally layered cement composites against projectile impact. Int. J. Impact Eng. 2019, 133, 103338. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, X.; Yang, H.; Lv, X.; Guo, F.; Shi, Y.; Hanif, A. Investigation and Application of Fractal Theory in Cement-Based Materials: A Review. Fractal Fract. 2021, 5, 247. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Li, X.; Guo, F.; Tang, S.; Lu, X.; Hanif, A. Influence of reactivity and dosage of MgO expansive agent on shrinkage and crack resistance of face slab concrete. Cem. Concr. Compos. 2021, 104333. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.X.; Yang, H.M.; Wang, Y.; Tang, S.W. Comparison of FLY ASH, PVA Fiber, MgO and Shrinkage-reducing Admixture on the Frost Resistance of Face Slab Concrete via Pore Structural and Fractal Analysis. Fractals 2021, 29, 2140002. [Google Scholar] [CrossRef]
- Maho, B.; Sukontasukkul, P.; Jamnam, S.; Yamaguchi, E.; Fujikake, K.; Banthia, N. Effect of rubber insertion on impact behavior of multilayer steel fiber reinforced concrete bulletproof panel. Constr. Build. Mater. 2019, 216, 476–484. [Google Scholar] [CrossRef]
- Nemkumar, B.; Mindess, S. Impact Resistance of Steel Fiber Reinforced Concrete. ACI Mater. J. 1996, 93, 472–479. [Google Scholar] [CrossRef]
- Banthia, N.; Nandakumar, N. Crack growth resistance of hybrid fiber reinforced cement composites. Cem. Concr. Compos. 2003, 25, 3–9. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Abdelgader, H.S.; Murali, G.; Ozbakkaloglu, T.; Lee, Y.H. Fiber-reinforced alkali-activated concrete: A review. J. Build. Eng. 2021, 45, 103638. [Google Scholar] [CrossRef]
- Lesovik, V.; Fediuk, R.; Amran, M.; Alaskhanov, A.; Volodchenko, A.; Murali, G.; Uvarov, V.; Elistratkin, M. 3D-Printed Mortars with Combined Steel and Polypropylene Fibers. Fibers 2021, 9, 79. [Google Scholar] [CrossRef]
- Rios, J.D.; Leiva, C.; Ariza, M.P.; Seitl, S.; Cifuentes, H. Analysis of the tensile fracture properties of ultra-high-strength fiber-reinforced concrete with different types of steel fibers by X-ray tomography. Mater. Des. 2019, 165, 107582. [Google Scholar] [CrossRef]
- Lin, X. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect. Constr. Build. Mater. 2018, 176, 371–382. [Google Scholar] [CrossRef]
- Schneider, K.; Michel, A.; Liebscher, M.; Terreri, L.; Hempel, S.; Mechtcherine, V. Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures. Cem. Concr. Compos. 2019, 97, 68–77. [Google Scholar] [CrossRef]
- Goldfeld, Y.; Rabinovitch, O.; Fishbain, B.; Quadflieg, T.; Gries, T. Sensory carbon fiber based textile-reinforced concrete for smart structures. J. Intell. Mater. Syst. Struct. 2015, 27, 469–489. [Google Scholar] [CrossRef]
- Chen, M.; Gao, P.; Geng, F.; Zhang, L.; Liu, H. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr. Build. Mater. 2017, 142, 320–327. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wang, D. Uniaxial Compression Behavior of Ultra-High Performance Concrete with Hybrid Steel Fiber. J. Mater. Civ. Eng. 2016, 28, 6016017. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Najjar, M.F.; Soliman, A.M.; Azabi, T.M. Novel steel fibre-reinforced preplaced aggregate concrete with superior mechanical performance. Cem. Concr. Compos. 2017, 82, 242–251. [Google Scholar] [CrossRef]
- Wang, N.; Mindess, S.; Ko, K. Fibre reinforced concrete beams under impact loading. Cem. Concr. Res. 1996, 26, 363–376. [Google Scholar] [CrossRef]
- Isla, F.; Ruano, G.; Luccioni, B. Analysis of steel fibers pull-out. Experimental study. Constr. Build. Mater. 2015, 100, 183–193. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H. Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact. Cem. Concr. Compos. 2016, 68, 109–122. [Google Scholar] [CrossRef]
- Quek, S.; Lin, V.; Maalej, M. Development of functionally-graded cementitious panel against high-velocity small projectile impact. Int. J. Impact Eng. 2010, 37, 928–941. [Google Scholar] [CrossRef]
- Moghadam, A.S.; Omidinasab, F.; Dalvand, A. Experimental investigation of (FRSC) cementitious composite functionally graded slabs under projectile and drop weight impacts. Constr. Build. Mater. 2020, 237, 117522. [Google Scholar] [CrossRef]
- Mastali, M.; Naghibdehi, M.G.; Naghipour, M.; Rabiee, S. Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts. Constr. Build. Mater. 2015, 95, 296–311. [Google Scholar] [CrossRef]
- Lai, J.; Yang, H.; Wang, H.; Zheng, X.; Wang, Q. Penetration experiments and simulation of three-layer functionally graded cementitious composite subjected to multiple projectile impacts. Constr. Build. Mater. 2019, 196, 499–511. [Google Scholar] [CrossRef]
- Canfield, J.A.; Clator, I.G. Development of a Scaling Law and Techniques to Investigate Penetration in Concrete; United States Naval Weapons Laboratory: Washington, DC, USA, 1966. [Google Scholar]
- Frew, D.; Hanchak, S.; Green, M.; Forrestal, M. Penetration of concrete targets with ogive-nose steel rods. Int. J. Impact Eng. 1998, 21, 489–497. [Google Scholar] [CrossRef]
- Wu, H.; Qian, F.; Huang, F.; Wang, Y. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete. Adv. Mech. Eng. 2012, 4, 296503. [Google Scholar] [CrossRef] [Green Version]
- Mu, Z.; Zhang, W. An investigation on mass loss of ogival projectiles penetrating concrete targets. Int. J. Impact Eng. 2011, 38, 770–778. [Google Scholar] [CrossRef]
- Guo, L.; He, Y.; Zhang, X.; Pang, C.; Qiao, L.; Guan, Z. Study mass loss at microscopic scale for a projectile penetration into concrete. Int. J. Impact Eng. 2014, 72, 17–25. [Google Scholar] [CrossRef]
- Nia, A.A.; Zolfaghari, M.; Khodarahmi, H.; Nili, M.; Gorbankhani, A.H. High Velocity Penetration of Concrete Targets with Eroding Long- Rod Projectiles; An Experiment and Analysis. Int. J. Prot. Struct. 2014, 5, 47–63. [Google Scholar] [CrossRef]
- Gold, V.M.; Vradis, G.C.; Pearson, J.C. Concrete Penetration by Eroding Projectiles: Experiments and Analysis. J. Eng. Mech. 1996, 122, 145–152. [Google Scholar] [CrossRef]
- Alrshoudi, F.; Mohammadhosseini, H.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.; Alsaif, A. Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J. Build. Eng. 2020, 32, 101522. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alrshoudi, F.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.R.; Alsaif, A. Performance evaluation of novel prepacked aggregate concrete reinforced with waste polypropylene fibers at elevated temperatures. Constr. Build. Mater. 2020, 259, 120418. [Google Scholar] [CrossRef]
- Ramkumar, V.; Murali, G.; Asrani, N.P.; Karthikeyan, K. Development of a novel low carbon cementitious two stage layered fibrous concrete with superior impact strength. J. Build. Eng. 2019, 25, 100841. [Google Scholar] [CrossRef]
- Murali, G.; Ramprasad, K. A feasibility of enhancing the impact strength of novel layered two stage fibrous concrete slabs. Eng. Struct. 2018, 175, 41–49. [Google Scholar] [CrossRef]
- IS 1489(Part 1): 2015 Portland Pozzolana Cement-Specification; Bureau of Indian Standards: New Delhi, India, 2015.
- IS 383: Coarse and Fine Aggregate for Concrete Specification; Bureau of Indian Standards: New Delhi, India, 2016.
- ASTM. C939-10 Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method). ASTM Int. 2010, 4, 9–11. [Google Scholar] [CrossRef]
- IS 9103 Specification for Concrete Admixtures; Bureau of Indian Standards: New Delhi, India, 1999; pp. 1–22.
- Stodola, P.R.; Akers, D.; Bennet, J., Jr.; Cheff, A.; Clapp, T.; Cope, J.; Green, D. Guide for the Use of Preplaced Aggregate Concrete for Structural and Mass Concrete Applications. ACI Mater. J. 1992, 88, 650–668. [Google Scholar] [CrossRef]
- Abirami, T.; Murali, G.; Mohan, K.S.R.; Salaimanimagudam, M.; Nagaveni, P.; Bhargavi, P. Multi-layered two stage fibrous composites against low-velocity falling mass and projectile impact. Constr. Build. Mater. 2020, 248, 118631. [Google Scholar] [CrossRef]
- Standard Test Method for Rebound Number of Hardened Concrete; ASTM C805/C805M-13; ASTM License Agreement: West Conshohocken, PA, USA, 2014. [CrossRef]
- IS 516: 2014 Method of Tests for Strength of Concrete. IS 516-1959 (Reaffirmed 2004); IS Code Book-Indian Standard: New Delhi, India, 2004.
- Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015, 94, 73–82. [Google Scholar] [CrossRef]
- Prasad, N.; Murali, G.; Vatin, N. Modified Falling Mass Impact Test Performance on Functionally Graded Two Stage Aggregate Fibrous Concrete. Materials 2021, 14, 5833. [Google Scholar] [CrossRef]
- Najjar, M.; Soliman, A.; Nehdi, M. Critical overview of two-stage concrete: Properties and applications. Constr. Build. Mater. 2014, 62, 47–58. [Google Scholar] [CrossRef]
- Manohar, T.; Suribabu, C.; Murali, G.; Salaimanimagudam, M. A novel steel-PAFRC composite fender for bridge pier protection under low velocity vessel impacts. Structures 2020, 26, 765–777. [Google Scholar] [CrossRef]
- Salaimanimagudam, M.P.; Suribabu, C.R.; Murali, G.; Abid, S.R. Impact Response of Hammerhead Pier Fibrous Concrete Beams Designed with Topology Optimization. Period. Polytech. Civ. Eng. 2020, 64, 1244–1258. [Google Scholar] [CrossRef]
- Abid, S.R.; Abdul-Hussein, M.L.; Ayoob, N.S.; Ali, S.H.; Kadhum, A.L. Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber. Heliyon 2020, 6, e03198. [Google Scholar] [CrossRef] [Green Version]
- Abid, S.R.; Hussein, M.L.A.; Ali, S.H.; Kazem, A.F. Suggested modified testing techniques to the ACI 544-R repeated drop-weight impact test. Constr. Build. Mater. 2020, 244, 118321. [Google Scholar] [CrossRef]
- Abbass, A.A.; Abid, S.R.; Arna’Ot, F.H.; Al-Ameri, R.A.; Özakça, M. Flexural response of hollow high strength concrete beams considering different size reductions. Structures 2020, 23, 69–86. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Karthikeyan, K.; Haridharan, M.; Amran, M.; Siva, A. Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber. Constr. Build. Mater. 2021, 284, 122749. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Depak, S.; Hariharan, K.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857. [Google Scholar] [CrossRef]
- Abid, S.R.; Gunasekaran, M.; Ali, S.H.; Kadhum, A.L.; Al-Gasham, T.S.; Fediuk, R.; Vatin, N.; Karelina, M. Impact Performance of Steel Fiber-Reinforced Self-Compacting Concrete against Repeated Drop Weight Impact. Crystals 2021, 11, 91. [Google Scholar] [CrossRef]
- Abbass, A.; Abid, S.; Özakça, M. Experimental Investigation on the Effect of Steel Fibers on the Flexural Behavior and Ductility of High-Strength Concrete Hollow Beams. Adv. Civ. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Arna’Ot, F.H.; Abbass, A.A.; Abualtemen, A.A.; Abid, S.R.; Özakça, M. Residual strength of high strength concentric column-SFRC flat plate exposed to high temperatures. Constr. Build. Mater. 2017, 154, 204–218. [Google Scholar] [CrossRef]
- Jabir, H.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; Vasilev, Y. Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC. Fibers 2020, 8, 74. [Google Scholar] [CrossRef]
- Abid, S.R.; Murali, G.; Amran, M.; Vatin, N.; Fediuk, R.; Karelina, M. Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites. Materials 2021, 14, 349. [Google Scholar] [CrossRef]
- Abbas, A.A.; ’Ot, F.H.A.; Abid, S.R.; Özakça, M. Flexural behavior of ECC hollow beams incorporating different synthetic fibers. Front. Struct. Civ. Eng. 2021, 15, 399–411. [Google Scholar] [CrossRef]
- Haridharan, M.; Matheswaran, S.; Murali, G.; Abid, S.R.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S. Impact response of two-layered grouted aggregate fibrous concrete composite under falling mass impact. Constr. Build. Mater. 2020, 263, 120628. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Amran, Y.M.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures 2020, 28, 1502–1515. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Abdelgader, H.S.; Amran, Y.H.M.; Shekarchi, M.; Wilde, K. Repeated Projectile Impact Tests on Multi-Layered Fibrous Cementitious Composites. Int. J. Civ. Eng. 2021, 19, 635–651. [Google Scholar] [CrossRef]
- Lai, J.; Wang, H.; Yang, H.; Zheng, X.; Wang, Q. Dynamic properties and SPH simulation of functionally graded cementitious composite subjected to repeated penetration. Constr. Build. Mater. 2017, 146, 54–65. [Google Scholar] [CrossRef]
- Almusallam, T.; Siddiqui, N.; Iqbal, R.A.; Abbas, H. Response of hybrid-fiber reinforced concrete slabs to hard projectile impact. Int. J. Impact Eng. 2013, 58, 17–30. [Google Scholar] [CrossRef]
Mix Id | C/S Ratio | W/C Ratio | Dosage of Fibre in Layer I (%) | Dosage of Fibre in Layer II (%) | Dosage of Fibre in Layer III (%) | SP (%) | |||
---|---|---|---|---|---|---|---|---|---|
SF | PF | SF | PF | SF | PF | ||||
PAC | 1.0 | 0.45 | 0 | 0.3 | |||||
S-SF | 2.4 SF | 0.4 | |||||||
S-PF | 2.4 PF | ||||||||
D-SF-PF | 2.4 SF | 2.4 PF | |||||||
D-PF-SF | 2.4 PF | 2.4 SF | |||||||
T-FG1 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | |||
T-FG2 | 2.8 | 0 | 1.6 | 0 | 2.8 | 0 | |||
T-FG3 | 0 | 2.8 | 0 | 1.6 | 0 | 2.8 | |||
T-FG4 | 1.4 | 1.4 | 0.8 | 0.8 | 1.4 | 1.4 | |||
T-FG5 | 3.6 | 0 | 0 | 0 | 3.6 | 0 | |||
T-FG6 | 0 | 3.6 | 0 | 0 | 0 | 3.6 | |||
T-FG7 | 1.8 | 1.8 | 0 | 0 | 1.8 | 1.8 |
Mixture Id | Compound Bevel (CB) | Convex Edge (CE) | Hollow Edge (HE) | Compound Bevel (CB) | Convex Edge (CE) | Hollow Edge (HE) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Damage Area | Damage Area | Damage Area | Damage Ratio | Damage Ratio | Damage Ratio | |||||||
Top | Bot | Top | Bot | Top | Bot | Top | Bot | Top | Bot | Top | Bot | |
PAC | 4293 | 668 | 1816 | - | 2317 | - | 0.24 | 0.04 | 0.10 | - | 0.13 | - |
S-SF | 5463 | 8409 | 3749 | 7005 | 4496 | 8591 | 0.30 | 0.46 | 0.21 | 0.39 | 0.25 | 0.47 |
S-PF | 6862 | 10,041 | 3638 | 3072 | 1984 | 4964 | 0.38 | 0.55 | 0.20 | 0.17 | 0.11 | 0.27 |
D-SF-PF | 4592 | 7264 | 3340 | 8457 | 4602 | 10,198 | 0.25 | 0.40 | 0.18 | 0.47 | 0.25 | 0.56 |
D-PF-SF | 6667 | 8643 | 1437 | 7427 | 4249 | 8319 | 0.37 | 0.48 | 0.08 | 0.41 | 0.23 | 0.46 |
T-FG1 | 4940 | 8352 | 6931 | 8731 | 5133 | 8076 | 0.27 | 0.46 | 0.38 | 0.48 | 0.28 | 0.45 |
T-FG2 | 3824 | 9503 | 2244 | 8291 | 4527 | 9360 | 0.21 | 0.52 | 0.12 | 0.46 | 0.25 | 0.52 |
T-FG3 | 422 | 8687 | 2375 | 5729 | 2135 | 7881 | 0.02 | 0.48 | 0.13 | 0.32 | 0.12 | 0.43 |
T-FG4 | 4643 | 10,373 | 3198 | 7554 | 4829 | 7116 | 0.26 | 0.57 | 0.18 | 0.42 | 0.27 | 0.39 |
T-FG5 | 4318 | 8283 | 3795 | 6452 | 3850 | 6574 | 0.24 | 0.46 | 0.21 | 0.36 | 0.21 | 0.36 |
T-FG6 | 5178 | 6408 | 4620 | 7822 | 4880 | 6968 | 0.29 | 0.35 | 0.25 | 0.43 | 0.27 | 0.38 |
T-FG7 | 3719 | 7331 | 3367 | 10,963 | 4439 | 8052 | 0.21 | 0.40 | 0.19 | 0.60 | 0.24 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, N.; Murali, G.; Abid, S.R.; Vatin, N.; Fediuk, R.; Amran, M. Effect of Needle Type, Number of Layers on FPAFC Composite against Low-Velocity Projectile Impact. Buildings 2021, 11, 668. https://doi.org/10.3390/buildings11120668
Prasad N, Murali G, Abid SR, Vatin N, Fediuk R, Amran M. Effect of Needle Type, Number of Layers on FPAFC Composite against Low-Velocity Projectile Impact. Buildings. 2021; 11(12):668. https://doi.org/10.3390/buildings11120668
Chicago/Turabian StylePrasad, Nandhu, Gunasekaran Murali, Sallal R. Abid, Nikolai Vatin, Roman Fediuk, and Mugahed Amran. 2021. "Effect of Needle Type, Number of Layers on FPAFC Composite against Low-Velocity Projectile Impact" Buildings 11, no. 12: 668. https://doi.org/10.3390/buildings11120668
APA StylePrasad, N., Murali, G., Abid, S. R., Vatin, N., Fediuk, R., & Amran, M. (2021). Effect of Needle Type, Number of Layers on FPAFC Composite against Low-Velocity Projectile Impact. Buildings, 11(12), 668. https://doi.org/10.3390/buildings11120668