Integration of BIM and Immersive Technologies for AEC: A Scientometric-SWOT Analysis and Critical Content Review
Abstract
:1. Introduction
2. Key Definitions and Concepts
2.1. An Overview of BIM and ImT’s
2.2. BIM with VR
2.3. BIM with AR
2.4. BIM with MR
3. Research Methodology
3.1. Articles Retrieval
3.2. Bibliography Analysis
3.3. Content Analysis
4. Scientometric Analysis
5. SWOT Analysis
5.1. An Overview of the Application of Immersive Technologies in the AEC Industry
5.2. Limitations of the Study
6. Recommended Research Directions
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davila Delgado, J.M.; Oyedele, L.; Beach, T.; Demian, P. Augmented and Virtual Reality in Construction: Drivers and Limitations for Industry Adoption. J. Constr. Eng. Manag. 2020, 146, 1–17. [Google Scholar] [CrossRef]
- ISO 19650-1:2018 ISO 19650-1:2018(en). Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Waterhouse, R. 10th Annual BIM Report, National Building Specification. NBS UK, 2020. [Google Scholar]
- Hu, H. Development of Interoperable Data Protocol for Integrated Bridge Project Delivery. Ph.D. Thesis, State University of New York, Buffalo, NY, USA, 2014. [Google Scholar]
- Shirole, A.M.; Riordan, T.J.; Chen, S.S.; Gao, Q.; Hu, H.; Puckett, J.A. BrIM for project delivery and the life-cycle: State of the art. Bridg. Struct. 2009, 5, 173–187. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. From BIM to extended reality in AEC industry. Autom. Constr. 2020, 116, 103254. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.; Al-hussein, M. Automation in Construction Virtual reality applications for the built environment: Research trends and opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Abbas, A.; Choi, M.; Seo, J.; Cha, S.H.; Li, H. Effectiveness of Immersive Virtual Reality-based Communication for Construction Projects. KSCE J. Civ. Eng. 2019, 23, 4972–4983. [Google Scholar] [CrossRef]
- Suh, A.; Prophet, J. The state of immersive technology research: A literature analysis. Comput. Human Behav. 2018, 86, 77–90. [Google Scholar] [CrossRef]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Front. Psychol. 2018, 9, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.Y.M. Virtual Reality and Construction Safety BT—An Economic Analysis on Automated Construction Safety: Internet of Things, Artificial Intelligence and 3D Printing; Li, R.Y.M., Ed.; Springer: Singapore, 2018; pp. 117–136. [Google Scholar]
- Muhammad, A.A.; Yitmen, I.; Alizadehsalehi, S.; Celik, T. Adoption of Virtual Reality (VR) for Site Layout Optimization of Construction Projects. Tek. Dergi 2020, 9833–9850. [Google Scholar] [CrossRef]
- Leue, M.; tom Dieck, D.; Jung, T. A Theoretical Model of Augmented Reality Acceptance; E-review of Tourism Research; Texas A & M University: College Station, TX, USA, 2014; Volume 5. [Google Scholar]
- Son, H.; Lee, S.; Hwang, N.; Kim, C. The adoption of building information modeling in the design organization: An empirical study of architects in Korean design firms. In Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining—ISARC 2014, Sydney, Australia, 9–11 July 2014; pp. 194–201. [Google Scholar]
- tom Dieck, M.C.; Jung, T. A theoretical model of mobile augmented reality acceptance in urban heritage tourism. Curr. Issues Tour. 2018, 21, 154–174. [Google Scholar] [CrossRef]
- Lee, S.; Yu, J. Comparative Study of BIM Acceptance between Korea and the United States. J. Constr. Eng. Manag. 2016, 142, 1–9. [Google Scholar] [CrossRef]
- Piroozfar, A.; Farr, E.R.P.; Boseley, S.; Essa, A.; Jin, R. The application of Augmented Reality (AR) in the Architecture Engineering and Construction (AEC) industry. In Proceedings of the Tenth International Conference on Construction in the 21st Century, Colombo, Sri Lanka, 2–4 July 2018. [Google Scholar]
- Naticchia, B.; Corneli, A.; Carbonari, A.; Bonci, A.; Pirani, M. Mixed reality approach for the management of building maintenance and operation. In Proceedings of the ISARC 2018—35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, Berlin, Germany, 20–25 July 2018. [Google Scholar]
- El Ammari, K.; Hammad, A. Remote interactive collaboration in facilities management using BIM-based mixed reality. Autom. Constr. 2019, 107, 102940. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Digital twin and web-based virtual gaming technologies for online education: A case of construction management and engineering. Appl. Sci. 2020, 10, 4678. [Google Scholar] [CrossRef]
- Protchenko, K.; Dlbrowski, P.; Garbacz, A. Development and Assessment of VR/AR Solution for Verification during the Construction Process. MATEC Web Conf. 2018, 196, 04083. [Google Scholar] [CrossRef]
- Orihuela, P.; Noel, M.; Pacheco, S.; Orihuela, J.; Yaya, C.; Aguilar, R. Application of virtual and augmented reality techniques during design and construction process of building projects. 27th Annual Conference of the International Group for Lean Construction IGLC; IGLC: Dublin, Ireland, 3–5 July 2019; pp. 1105–1116. [Google Scholar]
- Perrier, N.; Bled, A.; Bourgault, M.; Cousin, N.; Danjou, C.; Pellerin, R.; Roland, T. Construction 4.0: A survey of research trends. J. Inf. Technol. Constr. 2020, 25, 416–437. [Google Scholar] [CrossRef]
- Pour Rahimian, F.; Seyedzadeh, S.; Oliver, S.; Rodriguez, S.; Dawood, N. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 2020, 110, 103012. [Google Scholar] [CrossRef]
- International Data Corporation. Worldwide Quarterly Augmented and Virtual Reality Headset Tracker-Second Quarter; International Data Corporation: Framingham, MA, USA, 2017. [Google Scholar]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A literature review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Rose-Ackerman, S. Introduction and overview. Int. Handb. Econ. Corrupt. 2006, 3–22. [Google Scholar] [CrossRef]
- Hou, L.; Wu, S.; Zhang, G.K.; Tan, Y.; Wang, X. Literature review of digital twins applications in constructionworkforce safety. Appl. Sci. 2021, 11, 339. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Gerber, D.; Nguyen, B.; Gaetani, I. Digital Twin: Towards a Meaningful Framework; Arup: New York, NY, USA, 2019; p. 160. [Google Scholar]
- Pavón, R.M.; Arcos Alvarez, A.A.; Alberti, M.G. Possibilities of BIM-FM for the Management of COVID in Public Buildings. Sustainability 2020, 12, 9974. [Google Scholar] [CrossRef]
- Palmarini, R.; Erkoyuncu, J.A.; Roy, R.; Torabmostaedi, H. A systematic review of augmented reality applications in maintenance. Robot. Comput. Integr. Manuf. 2018, 49, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Glegg, S.M.N.; Levac, D.E. Barriers, Facilitators and Interventions to Support Virtual Reality Implementation in Rehabilitation: A Scoping Review. PM R 2018, 10, 1237–1251.e1. [Google Scholar] [CrossRef] [PubMed]
- Manyika, J.; Ramaswamy, S.; Khanna, S.; Sarrazin, H.; Pinkus, G.; Sethupathy, G.; Yaffe, A. Executive Summary Digital America: A Tale of the Haves and Have-Mores; McKinsey&Company: New York, NY, USA, 2015. [Google Scholar]
- Rauschnabel, P.A.; Rossmann, A.; tom Dieck, M.C. An adoption framework for mobile augmented reality games: The case of Pokémon Go. Comput. Human Behav. 2017, 76, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.C.P.; Chen, K.; Chen, W. State-of-the-Art Review on Mixed Reality Applications in the AECO Industry. J. Constr. Eng. Manag. 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Diao, P.H.; Shih, N.J. Trends and research issues of augmented reality studies in architectural and civil engineering education-A review of academic journal publications. Appl. Sci. 2019, 9, 1840. [Google Scholar] [CrossRef] [Green Version]
- Chuah, S.H.-W. Why and Who Will Adopt Extended Reality Technology? Literature Review, Synthesis, and Future Research Agenda. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Motawa, I.; Almarshad, A. A knowledge-based BIM system for building maintenance. Autom. Constr. 2013, 29, 173–182. [Google Scholar] [CrossRef]
- Becerik-Gerber, B.; Jazizadeh, F.; Li, N.; Calis, G. Application areas and data requirements for BIM-enabled facilities management. J. Constr. Eng. Manag. 2012, 138, 431–442. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.L.; Wang, X.; Chan, A.P.C. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Shou, W.; Xu, B. Integrating BIM and augmented reality for interactive architectural visualisation. Constr. Innov. 2014, 14, 453–476. [Google Scholar] [CrossRef]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator Telepresence Technol. 1995, 2351, 282–292. [Google Scholar]
- Zhang, C.; Perkis, A.; Arndt, S. Spatial immersion versus emotional immersion, which is more immersive? In Proceedings of the 2017 9th International Conference on Quality of Multimedia Experience QoMEX 2017, Erfurt, Germany, 31 May–2 June 2017.
- Asgari, Z.; Rahimian, F.P. Advanced Virtual Reality Applications and Intelligent Agents for Construction Process Optimisation and Defect Prevention. Procedia Eng. 2017, 196, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Boga, S.R.C.; Kansagara, B.; Kannan, R. Integration of Augmented Reality and Virtual Reality in building information modeling: The next frontier in civil engineering education. Virtual Augment. Real. Concepts Methodol. Tools Appl. 2018, 2, 1037–1066. [Google Scholar]
- Kim, M.J.; Wang, X.; Love, P.E.D.; Li, H.; Kang, S.C. Virtual reality for the built environment: A critical review of recent advances. J. Inf. Technol. Constr. 2013, 18, 279–305. [Google Scholar]
- Whyte, J. Industrial Applications of Virtual Reality in architecture and construction. J. Inf. Technol. Constr. (ITcon) 2003, 8, 43–50. [Google Scholar]
- Heydarian, A.; Carneiro, J.P.; Gerber, D.; Becerik-Gerber, B.; Hayes, T.; Wood, W. Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Autom. Constr. 2015, 54, 116–126. [Google Scholar] [CrossRef]
- Hinckley, K.; Pausch, R.; Goblel, J.C.; Kassell, N.F. A survey of design issues in spatial input. In Proceedings of the 7th ACM Symposium on User Interface and Software Technology UIST 1994, Marina del Rey, CA, USA, 2–4 November 1994; pp. 213–222. [Google Scholar]
- Wang, X.; Love, P.E.D.; Kim, M.J.; Wang, W. Mutual awareness in collaborative design: An Augmented Reality integrated telepresence system. Comput. Ind. 2014, 65, 314–324. [Google Scholar] [CrossRef]
- Tariq, M.A.; Farooq, U.; Aamir, E.; Shafaqat, R. Exploring Adoption of Integrated Building Information Modelling and Virtual Reality. In Proceedings of the 1st International Conference on Electrical, Communication, and Computer Engineering ICECCE 2019, Swat, Pakistan, 24–25 July 2019; pp. 1–6. [Google Scholar]
- Zaker, R.; Coloma, E. Virtual reality-integrated workflow in BIM-enabled projects collaboration and design review: A case study. Vis. Eng. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Anumba, C.J.; Pan, J.; Issa, R.R.A.; Mutis, I. Collaborative project information management in a semantic web environment. Eng. Constr. Archit. Manag. 2008, 15, 78–94. [Google Scholar] [CrossRef]
- Aral, S.; Brynjolfsson, E.; Van Alstyne, M. Information, technology, and information worker productivity. Inf. Syst. Res. 2012, 23, 849–867. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Wang, X.; Bernold, L.; Love, P.E.D. Using animated augmented reality to cognitively guide assembly. J. Comput. Civ. Eng. 2013, 27, 439–451. [Google Scholar] [CrossRef]
- Meža, S.; Turk, Ž.; Dolenc, M. Component based engineering of a mobile BIM-based augmented reality system. Autom. Constr. 2014, 42, 1–12. [Google Scholar] [CrossRef]
- Caudell, T.P.; Mizell, D.W. Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 2003; Volume 2, pp. 659–669. [Google Scholar]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.L.; Kang, S.C.; Wang, X. Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Autom. Constr. 2013, 33, 116–122. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, S.; Li, Y.; Wang, Y.; Yang, B. Towards cloud Augmented Reality for construction application by BIM and SNS integration. Autom. Constr. 2013, 33, 37–47. [Google Scholar] [CrossRef]
- Billinghurst, M.; Clark, A.; Lee, G. A survey of augmented reality. Found. Trends Human Comput. Interact. 2014, 8, 73–272. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Feiner, S.; Maclntyre, B.; Webster, A. A Touring Hachine: Prototgping 3D Hobite Augmented Reatitg Sgstems for Exptoring the Urban Environment. Pers. Technol. 1997, 1, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, E77–D, 1–15. [Google Scholar]
- Milgram, P.; Colquhoun, H. A Taxonomy of Real and Virtual World Display Integration. Mix. Real. 1999, 5–30. [Google Scholar]
- Dunston, P.S.; Wang, X. An iterative methodology for mapping mixed reality technologies to AEC operations. Electron. J. Inf. Technol. Constr. 2011, 16, 509–528. [Google Scholar]
- Wang, X.; Dunston, P.S. Comparative Effectiveness of Mixed Reality-Based Virtual Environments in Collaborative Design. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 41, 284–296. [Google Scholar] [CrossRef]
- Vision Network Report, Centre for Digital Built Britain. University of Cambridge: Cambridge, UK, 20 December 2018.
- Wang, X.; Dunston, P.S. Compatibility issues in Augmented Reality systems for AEC: An experimental prototype study. Autom. Constr. 2006, 15, 314–326. [Google Scholar] [CrossRef]
- Zabidin, N.S.; Belayutham, S.; Ibrahim, C.K.I.C. A bibliometric and scientometric mapping of Industry 4.0 in construction. J. Inf. Technol. Constr. 2020, 25, 287–307. [Google Scholar]
- Bishop, G.; Fuchs, H. Research directions in virtual environments. ACM SIGGRAPH Comput. Graph. 1992, 26, 153–177. [Google Scholar] [CrossRef]
- Gigante, M.A. 1—Virtual Reality: Definitions, History and Applications. In Virtual Reality Systems; Earnshaw, R.A., Gigante, M.A., Jones, H.B.T.-V.R.S., Eds.; Academic Press: Boston, MA, USA, 1993; pp. 3–14. ISBN 978-0-12-227748-1. [Google Scholar]
- Cruz-Neira, C.; Leigh, J.; Papka, M.; Barnes, C.; Cohen, S.M.; Das, S.; Engelmann, R.; Hudson, R.; Roy, T.; Siegel, L.; et al. Scientists in wonderland: A report on visualization applications in the CAVE virtual reality environment. In Proceedings of the 1993 IEEE Research Properties in Virtual Reality Symposium VRAIS 1993, San Jose, CA, USA, 25–26 October 1993; pp. 59–66. [Google Scholar]
- Warwick, K.; Gray, J.; Roberts, D. Virtual Reality in Engineering; Institution of Electrical Engineers: London, UK, 1993. [Google Scholar]
- Diemer, J.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Mühlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, M.Y.C.; Chu, S.C.; Sauer, P.L. Is Augmented Reality Technology an Effective Tool for E-commerce? An Interactivity and Vividness Perspective. J. Interact. Mark. 2017, 39, 89–103. [Google Scholar] [CrossRef]
- Tussyadiah, I.P. Virtual Reality, Presence, and Attitude Change: Empirical Evidence from Tourism. Ph.D. Thesis, Guildford, UK, 2017. [Google Scholar]
- Slater, M.; Sanchez-Vives, M.V. Enhancing our lives with immersive virtual reality. Front. Robot. AI 2016, 3, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Skalski, P.; Tamborini, R. The role of social presence in interactive agent-based persuasion. Media Psychol. 2007, 10, 385–413. [Google Scholar] [CrossRef]
- Fluke, C.J.; Barnes, D.G. The Ultimate Display. Cornell University: Ithca, NY, USA, 2016; pp. 4–5. Available online: https://arxiv.org/abs/1601.03459 (accessed on 10 January 2021).
- Guo, H.L.; Li, H.; Li, V. VP-based safety management in large-scale construction projects: A conceptual framework. Autom. Constr. 2013, 34, 16–24. [Google Scholar] [CrossRef]
- Steuer, J. Defining virtual reality: Characteristics determining telepresence. J. Commun. 1992, 42, 73–94. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Rezgui, Y.; Bradley, A.; Ong, H.N. BIM based virtual environment for fire emergency evacuation. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Kuncham, K. Timelining The Construction in Immersive Virtual Reality System Using BIM Application. Master’s Thesis, Texas A & M University, College Station, TX, USA, 2013. [Google Scholar]
- Dunston, P.S.; Arns, L.L.; McGlothlin, J.D. Virtual reality mock-ups for healthcare facility design and a model for technology hub collaboration. J. Build. Perform. Simul. 2010, 3, 185–195. [Google Scholar] [CrossRef]
- Svalestuen, F.; Knotten, V.; Lædre, O.; Drevland, F.; Lohne, J. Using Building Information Model (Bim) Devices To Improve Information Flow and Collaboration on Construction Sites. J. Inf. Technol. Constr. 2017, 22, 204–219. [Google Scholar]
- Jensen, C.G. Collaboration and Dialogue in Virtual Reality. Collab. Dialogue Virtual Real. 2017, 5, 85–110. [Google Scholar]
- Romano, S.; Capece, N.; Erra, U.; Scanniello, G.; Lanza, M. On the use of virtual reality in software visualization: The case of the city metaphor. Inf. Softw. Technol. 2019, 114, 92–106. [Google Scholar] [CrossRef]
- Virtual, U.; Interface, R.; Sherman, W.R.; Craig, A.B.; Varshney, A.; Watson, B. Reviews Level of Detail for 3D Graphics; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993; pp. 441–442. [Google Scholar]
- Sampaio, A.Z.; Martins, O.P. The application of virtual reality technology in the construction of bridge: The cantilever and incremental launching methods. Autom. Constr. 2014, 37, 58–67. [Google Scholar] [CrossRef]
- Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Autom. Constr. 2018, 85, 51–64. [Google Scholar] [CrossRef]
- Zhao, D.; Lucas, J. Virtual reality simulation for construction safety promotion. Int. J. Inj. Contr. Saf. Promot. 2015, 22, 57–67. [Google Scholar] [CrossRef]
- Boud, A.C.; Haniff, D.J.; Baber, C.; Steiner, S.J. Virtual reality and augmented reality as a training tool for assembly tasks. In Proceedings of the 1999 IEEE International Conference on Information Visualization (Cat. No. PR00210), London, UK, 14–16 July 1999; pp. 32–36. [Google Scholar]
- Fogarty, J.; McCormick, J.; El-Tawil, S. Improving Student Understanding of Complex Spatial Arrangements with Virtual Reality. J. Prof. Issues Eng. Educ. Pract. 2018, 144, 1–10. [Google Scholar] [CrossRef]
- Paes, D.; Arantes, E.; Irizarry, J. Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Autom. Constr. 2017, 84, 292–303. [Google Scholar] [CrossRef]
- Ventura, S.M.; Castronovo, F.; Ciribini, A.L.C. A design review session protocol for the implementation of immersive virtual reality in usability-focused analysis. J. Inf. Technol. Constr. 2020, 25, 233–253. [Google Scholar]
- Aromaa, S.; Väänänen, K. Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design. Appl. Ergon. 2016, 56, 11–18. [Google Scholar] [CrossRef]
- Berg, L.P.; Vance, J.M. An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality. J. Comput. Inf. Sci. Eng. 2016, 17. [Google Scholar] [CrossRef]
- Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I.R. A low-cost and lightweight 3D interactive real estate-purposed indoor virtual reality applicatioN. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, M.; Azhar, S. Investigating virtual reality headset applications in construction. In Proceedings of the 52nd ASC, Provo, UT, USA, 13–16 April 2016. [Google Scholar]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Kamat, V.R. Visualization of construction graphics in outdoor augmented reality. In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; pp. 1914–1920. [Google Scholar]
- Wang, X.; Love, P.E.D.; Kim, M.J.; Park, C.S.; Sing, C.P.; Hou, L. A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 2013, 34, 37–44. [Google Scholar] [CrossRef]
- Chu, M.; Matthews, J.; Love, P.E.D. Integrating mobile Building Information Modelling and Augmented Reality systems: An experimental study. Autom. Constr. 2018, 85, 305–316. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Kamat, V.R. Enabling discovery-based learning in construction using telepresent augmented reality. Autom. Constr. 2013, 33, 3–10. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Kamat, V.R. Georeferenced registration of construction graphics in mobile outdoor augmented reality. J. Comput. Civ. Eng. 2007, 21, 247–258. [Google Scholar] [CrossRef]
- Shirazi, A.; Behzadan, A.H. Design and assessment of a mobile augmented reality-based information delivery tool for construction and civil engineering curriculum. J. Prof. Issues Eng. Educ. Pract. 2015, 141, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Dunston, P.S. Identification of application areas for Augmented Reality in industrial construction based on technology suitability. Autom. Constr. 2008, 17, 882–894. [Google Scholar] [CrossRef]
- Shin, D.H.; Dunston, P.S. Technology development needs for advancing Augmented Reality-based inspection. Autom. Constr. 2010, 19, 169–182. [Google Scholar] [CrossRef]
- Ganiev, A.; Shin, H.S.; Lee, K.H. Implementation of online and offline Building Information System based on Virtual Reality and Augmented Reality. Int. J. Eng. Technol. 2018, 7, 37–40. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Timm, B.W.; Kamat, V.R. General-purpose modular hardware and software framework for mobile outdoor augmented reality applications in engineering. Adv. Eng. Inform. 2008, 22, 90–105. [Google Scholar] [CrossRef]
- Chalhoub, J.; Ayer, S.K. Effect of varying task attributes on augmented reality aided point layout. J. Inf. Technol. Constr. 2019, 24, 95–111. [Google Scholar]
- Behzadan, A.H.; Kamat, V.R. Interactive augmented reality visualization for improved damage prevention and maintenance of underground infrastructure. In Proceedings of the Construction Research Congress 2009: Building a Sustainable Future, Seattle, WA, USA, 5–7 April 2009; pp. 1214–1222. [Google Scholar]
- Agrawal, A.; Acharya, G.; Balasubramanian, K.; Agrawal, N.; Chaturvedi, R. A Review on the use of Augmented Reality to Generate Safety Awareness and Enhance Emergency Response. Int. J. Curr. Eng. Technol. 2016, 6, 813–820. [Google Scholar]
- Grubert, J.; Langlotz, T.; Zollmann, S.; Regenbrecht, H. Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1706–1724. [Google Scholar] [CrossRef]
- Mani, G.F.; Feniosky, P.M.; Savarese, S. D4AR-A 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Electron. J. Inf. Technol. Constr. 2009, 14, 129–153. [Google Scholar]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Integrated sequential as-built and as-planned representation with D 4AR tools in support of decision-making tasks in the AEC/FM industry. J. Constr. Eng. Manag. 2011, 137, 1099–1116. [Google Scholar] [CrossRef]
- Park, C.S.; Lee, D.Y.; Kwon, O.S.; Wang, X. A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 2013, 33, 61–71. [Google Scholar] [CrossRef]
- Park, C.-S.; Kim, H.-J. A framework for construction safety management and visualization system. Autom. Constr. 2013, 33, 95–103. [Google Scholar] [CrossRef]
- Wang, X.; Kim, M.J.; Love, P.E.D.; Kang, S.C. Augmented reality in built environment: Classification and implications for future research. Autom. Constr. 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Kang, S.C.; Ting-Hui, L.I.N. Augmented reality system and method for on-site construction process. U.S. Patent No 9,436,427, 6 September 2016. [Google Scholar]
- Bae, H.; Golparvar-Fard, M.; White, J. High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Vis. Eng. 2013, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yeh, K.C.; Tsai, M.H.; Kang, S.C. On-site building information retrieval by using projection-based augmented reality. J. Comput. Civ. Eng. 2012, 26, 342–355. [Google Scholar] [CrossRef]
- Hou, L.; Wang, X.; Truijens, M. Using augmented reality to facilitate piping assembly: An experiment-based evaluation. J. Comput. Civ. Eng. 2015, 29, 1–12. [Google Scholar] [CrossRef]
- Kwon, O.S.; Park, C.S.; Lim, C.R. A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality. Autom. Constr. 2014, 46, 74–81. [Google Scholar] [CrossRef]
- Wang, X.; Love, P.E.D. BIM + AR: Onsite information sharing and communication via advanced visualization. In Proceedings of the 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design CSCWD 2012, Wuhan, China, 23–25 May 2012; pp. 850–855. [Google Scholar]
- Rankohi, S.; Waugh, L. Review and analysis of augmented reality literature for construction industry. Vis. Eng. 2013, 1, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, J.; Ahn, J.; Woo, W. Context-aware risk management for architectural heritage using historic building information modeling and virtual reality. J. Cult. Herit. 2019, 38, 242–252. [Google Scholar] [CrossRef]
- Holz, T.; Campbell, A.G.; O’Hare, G.M.P.; Stafford, J.W.; Martin, A.; Dragone, M. MiRA—Mixed Reality Agents. Int. J. Hum. Comput. Stud. 2011, 69, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Ohta, Y.; Tamura, H. Mixed Reality: Merging Real and Virtual Worlds; Springer Publishing Company: Berlin/Heidelberg, Germany, 2014; ISBN 3642875149. [Google Scholar]
- Dai, F.; Olorunfemi, A.; Peng, W.; Cao, D.; Luo, X. Can mixed reality enhance safety communication on construction sites? An industry perspective. Saf. Sci. 2021, 133, 105009. [Google Scholar] [CrossRef]
- Arroyo, E.; Righi, V.; Blat, J.; Ardaiz, O. Distributed multi-touch virtual collaborative environments. In Proceedings of the 2010 International Symposium on Collaborative Technologies and Systems, Chicago, IL, USA, 17–21 May 2010; pp. 635–636. [Google Scholar]
- Hauber, J.; Regenbrecht, H.; Billinghurst, M.; Cockburn, A. Spatiality in videoconferencing: Trade-offs between efficiency and social presence. In Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, Banff, AB, Canada, 4–8 November 2006; pp. 413–422. [Google Scholar]
- Brito, C.; Alves, N.; Magalhães, L.; Guevara, M. Bim mixed reality tool for the inspection of heritage buildings. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 25–29. [Google Scholar] [CrossRef] [Green Version]
- El Ammari, K.; Hammad, A. Collaborative BIM-based markerless mixed reality framework for facilities maintenance. In Proceedings of the International Conference on Computing in Civil and Building Engineering, Orlando, FL, USA, 23–25 June 2014; pp. 657–664. [Google Scholar]
- Kim, T.; Jeong, J.; Kim, Y.; Gu, H.; Woo, S.; Choo, S. A basic study on methodology of maintenance management using MR. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction ISARC 2019, Banff, AB, Canada, 21–24 May 2019; pp. 360–367. [Google Scholar]
- Dunston, P.S.; Wang, X. Mixed Reality-based visualization interfaces for architecture, engineering, and construction industry. J. Constr. Eng. Manag. 2005, 131, 1301–1309. [Google Scholar] [CrossRef]
- Saratu, T.; Chimay, A.; Somayeh, A. Construction Research Congress. In BIM Implementation in Facilities Management: An Analysis of Implementation Processes; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 725–735. [Google Scholar]
- Alizadehsalehi, S.; Hadavi, A. BIM/MR-Lean Construction Project Delivery Management System. In Proceedings of the 2019 IEEE Technology & Engineering Management Conference (TEMSCON), Atlanta, GA, USA, 12–14 June 2019; pp. 1–6. [Google Scholar]
- Riexinger, G.; Kluth, A.; Olbrich, M.; Braun, J.D.; Bauernhansl, T. Mixed Reality for On-Site Self-Instruction and Self-Inspection with Building Information Models. Procedia CIRP 2018, 72, 1124–1129. [Google Scholar] [CrossRef]
- Wang, X.; Dunston, P.S. User perspectives on mixed reality tabletop visualization for face-to-face collaborative design review. Autom. Constr. 2008, 17, 399–412. [Google Scholar] [CrossRef]
- Sheng, Y.; Yapo, T.C.; Young, C.; Cutler, B. A Spatially Augmented Reality Sketching Interface for Architectural Daylighting Design. IEEE Trans. Vis. Comput. Graph. 2011, 17, 38–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.; Kuester, F. Integrative simulation environment for conceptual structural analysis. J. Comput. Civ. Eng. 2015, 29, 1–10. [Google Scholar] [CrossRef]
- Turkan, Y.; Radkowski, R.; Karabulut-Ilgu, A.; Behzadan, A.H.; Chen, A. Mobile augmented reality for teaching structural analysis. Adv. Eng. Inform. 2017, 34, 90–100. [Google Scholar] [CrossRef]
- Ayer, S.K.; Messner, J.I.; Anumba, C.J. Development of ecocampus: A prototype system for sustainable building design education. J. Inf. Technol. Constr. 2014, 19, 520–533. [Google Scholar]
- Fiorentino, M.; Uva, A.E.; Monno, G.; Radkowski, R. Augmented Technical Drawings: A Novel Technique for Natural Interactive Visualization of Computer-Aided Design Models. J. Comput. Inf. Sci. Eng. 2012, 12. [Google Scholar] [CrossRef]
- Bae, H.; Golparvar-Fard, M.; White, J. Image-based localization and content authoring in structure-from-motion point cloud models for real-time field reporting applications. J. Comput. Civ. Eng. 2015, 29, 1–13. [Google Scholar] [CrossRef]
- Yang, M.-D.; Chao, C.-F.; Huang, K.-S.; Lu, L.-Y.; Chen, Y.-P. Image-based 3D scene reconstruction and exploration in augmented reality. Autom. Constr. 2013, 33, 48–60. [Google Scholar] [CrossRef]
- Albert, A.; Hallowell, M.R.; Kleiner, B.; Chen, A.; Golparvar-Fard, M. Enhancing construction hazard recognition with high-fidelity augmented virtuality. J. Constr. Eng. Manag. 2014, 140, 1–11. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, S.K.; Borrmann, A.; Kang, L.S. Improvement of Realism of 4D Objects Using Augmented Reality Objects and Actual Images of a Construction Site. KSCE J. Civ. Eng. 2018, 22, 2735–2746. [Google Scholar] [CrossRef]
- Kim, C.; Park, T.; Lim, H.; Kim, H. On-site construction management using mobile computing technology. Autom. Constr. 2013, 35, 415–423. [Google Scholar] [CrossRef]
- Bosché, F.; Abdel-Wahab, M.; Carozza, L. Towards a Mixed Reality System for Construction Trade Training. J. Comput. Civ. Eng. 2016, 30, 1–12. [Google Scholar] [CrossRef]
- Lin, T.-J.; Duh, H.B.-L.; Li, N.; Wang, H.-Y.; Tsai, C.-C. An investigation of learners’ collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Comput. Educ. 2013, 68, 314–321. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chi, H.L.; Kang, S.C.; Hsieh, S.H. Attention-Based User Interface Design for a Tele-Operated Crane. J. Comput. Civ. Eng. 2016, 30, 1–12. [Google Scholar] [CrossRef]
- Chi, H.-L.; Chen, Y.-C.; Kang, S.-C.; Hsieh, S.-H. Development of user interface for tele-operated cranes. Adv. Eng. Inform. 2012, 26, 641–652. [Google Scholar] [CrossRef]
- Kim, B.; Kim, C.; Kim, H. Interactive modeler for construction equipment operation using augmented reality. J. Comput. Civ. Eng. 2012, 26, 331–341. [Google Scholar] [CrossRef]
- Dai, F.; Dong, S.; Kamat, V.R.; Lu, M. Photogrammetry assisted measurement of interstory drift for rapid post-disaster building damage reconnaissance. J. Nondestruct. Eval. 2011, 30, 201–212. [Google Scholar] [CrossRef]
- Dong, S.; Feng, C.; Kamat, V.R. Sensitivity analysis of augmented reality-assisted building damage reconnaissance using virtual prototyping. Autom. Constr. 2013, 33, 24–36. [Google Scholar] [CrossRef]
- Kamat, V.R.; El-Tawil, S. Evaluation of augmented reality for rapid assessment of earthquake-induced building damage. J. Comput. Civ. Eng. 2007, 21, 303–310. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Reprint—Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Shahruddin, S.; Zairul, M. BIM requirements across a construction project lifecycle: A PRISMA-compliant systematic review and meta-analysis. Int. J. Innov. Creat. Chang. 2020, 12, 569–590. [Google Scholar]
- Sidani, A.; Dinis, F.M.; Sanhudo, L.; Duarte, J.; Santos Baptista, J.; Poças Martins, J.; Soeiro, A. Recent Tools and Techniques of BIM-Based Virtual Reality: A Systematic Review. Arch. Comput. Methods Eng. 2019. [Google Scholar] [CrossRef]
- Mansoori, S. Which is Better, a Conference Paper or Journal Publication? 2013. Available online: https://www.researchgate.net/post/Which_is_better_a_conference_paper_or_journal_publication (accessed on 7 February 2021).
- Wen, J.; Gheisari, M. Using virtual reality to facilitate communication in the AEC domain: A systematic review. Constr. Innov. 2020, 20, 509–542. [Google Scholar] [CrossRef]
- Aghaei Chadegani, A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of science and scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Sepasgozar, S.; Karimi, R.; Farahzadi, L.; Moezzi, F.; Shirowzhan, S.; Ebrahimzadeh, S.M.; Hui, F.; Aye, L. A Systematic Content Review of Artificial Intelligence and the Internet of Things Applications in Smart Home. Appl. Sci. 2020, 10, 3074. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A holistic review of cement composites reinforced with graphene oxide. Constr. Build. Mater. 2018, 171, 291–302. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Tijssen, R.J.W.; Van Raan, A.F.J. Mapping Changes in Science and Technology: Bibliometric Co-Occurrence Analysis of the R&D Literature. Eval. Rev. 1994, 18, 98–115. [Google Scholar]
- Hammersley, M. On “systematic” reviews of research literatures: A “narrative” response to Evans & Benefield. Br. Educ. Res. J. 2001, 27, 543–554. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar]
- Jin, R.; Zou, Y.; Gidado, K.; Ashton, P.; Painting, N. Scientometric analysis of BIM-based research in construction engineering and management. Eng. Constr. Archit. Manag. 2019, 26, 1750–1776. [Google Scholar] [CrossRef] [Green Version]
- Martinez, P.; Al-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for construction. Autom. Constr. 2019, 107. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Zhao, X. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Ozturk, G.B. Interoperability in building information modeling for AECO/FM industry. Autom. Constr. 2020, 113, 103122. [Google Scholar] [CrossRef]
- Hussein, M.; Zayed, T. Crane operations and planning in modular integrated construction: Mixed review of literature. Autom. Constr. 2021, 122, 103466. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q.P.; Osei-Kyei, R. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build. 2019, 190, 69–85. [Google Scholar] [CrossRef]
- Wang, P.; Wu, P.; Wang, J.; Chi, H.L.; Wang, X. A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health 2018, 15, 1204. [Google Scholar] [CrossRef] [Green Version]
- Marr, B. The Important Difference Between Virtual Reality, Augmented Reality and Mixed Reality. Forbes Magazine, 19 July 2019. [Google Scholar]
- Rizzo, A.; Kim, G.J. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence Teleoperators Virtual Environ. 2005, 14, 119–146. [Google Scholar] [CrossRef]
- Juan, Y.K.; Chen, H.H.; Chi, H.Y. Developing and evaluating a virtual reality-based navigation system for pre-sale housing sales. Appl. Sci. 2018, 8, 952. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.A. Design and Implementation of Campus 3D Virtual Walkthrough System—Take Hunan Science and Technology University as an Example. Appl. Mech. Mater. 2013, 268–270, 1926–1929. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, Y.-P.; Yien, H.-W.; Huang, C.-Y.; Su, Y.-C. Integrated BIM, game engine and VR technologies for healthcare design: A case study in cancer hospital. Adv. Eng. Inform. 2018, 36, 130–145. [Google Scholar] [CrossRef]
- Boton, C. Supporting constructability analysis meetings with Immersive Virtual Reality-based collaborative BIM 4D simulation. Autom. Constr. 2018, 96, 1–15. [Google Scholar] [CrossRef]
- Pejic, P.; Lakicevic, M.; Krasic, S.; Sidjanin, P. Application of Augmented and Virtual Reality in Residential Complex Presentation, Case Study: Energoprojekt Sunnyville. J. Ind. Des. Eng. Graph. 2017, 12, 127–133. [Google Scholar]
- Nee, A.Y.C.; Ong, S.K.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Eiris, R.; Gheisari, M. Research trends of virtual human applications in architecture, engineering and construction. J. Inf. Technol. Constr. 2017, 22, 168–184. [Google Scholar]
- Lin, J.-R.; Cao, J.; Zhang, J.-P.; van Treeck, C.; Frisch, J. Visualization of indoor thermal environment on mobile devices based on augmented reality and computational fluid dynamics. Autom. Constr. 2019, 103, 26–40. [Google Scholar] [CrossRef]
- Fukuda, T.; Yokoi, K.; Yabuki, N.; Motamedi, A. An indoor thermal environment design system for renovation using augmented reality. J. Comput. Des. Eng. 2019, 6, 179–188. [Google Scholar] [CrossRef]
- Pour Rahimian, F.; Chavdarova, V.; Oliver, S.; Chamo, F.; Potseluyko Amobi, L. OpenBIM-Tango integrated virtual showroom for offsite manufactured production of self-build housing. Autom. Constr. 2019, 102, 1–16. [Google Scholar] [CrossRef]
- Graham, K.; Chow, L.; Fai, S. From BIM to VR: Defining a level of detail to guide virtual reality narratives. J. Inf. Technol. Constr. 2019, 24, 553–568. [Google Scholar] [CrossRef]
- Dunston, P.S.; Arns, L.L.; Mcglothlin, J.D.; Lasker, G.C.; Kushner, A.G. An Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient Rooms. In Collaborative Design in Virtual Environments; Wang, X., Tsai, J.J.-H., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 167–176. ISBN 978-94-007-0605-7. [Google Scholar]
- Williams, G.; Gheisari, M.; Chen, P.J.; Irizarry, J. BIM2MAR: An efficient BIM translation to mobile augmented reality applications. J. Manag. Eng. 2014, 31, 1–8. [Google Scholar] [CrossRef]
- Dris, A.-S.; Lehericey, F.; Gouranton, V.; Arnaldi, B. OpenBIM Based IVE Ontology: An Ontological Approach to Improve Interoperability for Virtual Reality Applications. In Advances in Informatics and Computing in Civil and Construction Engineering; Mutis, I., Hartmann, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–136. [Google Scholar]
- Dermott, M. Robots and AR: Towards a platform economy for construction. J. Inf. Technol. Constr. 2019, 24, 527–539. [Google Scholar] [CrossRef]
- Ergun, O.; Akln, S.; Dino, I.G.; Surer, E. Architectural design in virtual reality and mixed reality environments: A comparative analysis. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 914–915. [Google Scholar]
- Turner, C.J.; Hutabarat, W.; Oyekan, J.; Tiwari, A. Discrete Event Simulation and Virtual Reality Use in Industry: New Opportunities and Future Trends. IEEE Trans. Human Mach. Syst. 2016, 46, 882–894. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.; Fowler, J.; Pantazis, C.; Sannino, M.; Walker, J.; Sheikhkhoshkar, M.; Rahimian, F.P. Integration of VR with BIM to facilitate real-time creation of bill of quantities during the design phase: A proof of concept study. Front. Eng. Manag. 2020, 7, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Zollmann, S.; Hoppe, C.; Kluckner, S.; Poglitsch, C.; Bischof, H.; Reitmayr, G. Augmented reality for construction site monitoring and documentation. Proc. IEEE 2014, 102, 137–154. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, H.; Yang, Y. Implementation of augmented reality for segment displacement inspection during tunneling construction. Autom. Constr. 2017, 82, 112–121. [Google Scholar] [CrossRef]
- Zaher, M.; Greenwood, D.; Marzouk, M. Mobile augmented reality applications for construction projects. Constr. Innov. 2018, 18, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.-H. A Smart Crane Operations Assistance System Using Augmented Reality Technology. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC 2011), Seoul, Korea, 29 June–2 July 2011; pp. 643–649. [Google Scholar]
- Sacks, R.; Perlman, A.; Barak, R. Construction safety training using immersive virtual reality. Constr. Manag. Econ. 2013, 31, 1005–1017. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Kim, H. Image-based construction hazard avoidance system using augmented reality in wearable device. Autom. Constr. 2017, 83, 390–403. [Google Scholar] [CrossRef]
- Getuli, V.; Giusti, T.; Capone, P.; Sorbi, T.; Bruttini, A. A Project Framework to Introduce Virtual Reality in Construction Health and Safety. AlmaDL J. New Front. Constr. Manag. Work. 2018, 9, 166–175. [Google Scholar]
- Moore, H.F.; Gheisari, M. A Review of Virtual and Mixed Reality Applications in Construction Safety Literature. Safety 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, S.; Polys, N.F.; Garza, J.M. de la Presence, Mixed Reality, and Risk-Taking Behavior: A Study in Safety Interventions. IEEE Trans. Vis. Comput. Graph. 2020, 26, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, A.Z.; Gomes, A.R.; Santos, J.P. Management of building supported on virtual interactive models: Construction planning and preventive maintenance. Electron. J. Inf. Technol. Constr. 2012, 17, 121–133. [Google Scholar]
- Irizarry, J.; Gheisari, M.; Williams, G.; Walker, B.N. InfoSPOT: A mobile Augmented Reality method for accessing building information through a situation awareness approach. Autom. Constr. 2013, 33, 11–23. [Google Scholar] [CrossRef]
- Neges, M.; Koch, C. Augmented reality supported work instructions for onsite facility maintenance. In Proceedings of the 23rd International Workshop of the European Group for Intelligent Computing in Engineering EG-ICE 2016, Kraków, Poland, 29 June–1 July 2016; pp. 10–12. [Google Scholar]
- Chalhoub, J.; Ayer, S.K. Using Mixed Reality for electrical construction design communication. Autom. Constr. 2018, 86, 1–10. [Google Scholar] [CrossRef]
- Baek, F.; Ha, I.; Kim, H. Augmented reality system for facility management using image-based indoor localization. Autom. Constr. 2019, 99, 18–26. [Google Scholar] [CrossRef]
- Ahn, S.J.; Han, S.U.; Al-Hussein, M. 2D Drawing Visualization Framework for Applying Projection-Based Augmented Reality in a Panelized Construction Manufacturing Facility: Proof of Concept. J. Comput. Civ. Eng. 2019, 33. [Google Scholar] [CrossRef]
- Dong, H.; Xu, G.; Chen, D. Research on Overhead crane training system and its construction based on virtual reality. In Proceedings of the 2010 International Conference on Artificial Intelligence and Education (ICAIE), Hangzhou, China, 29–30 October 2010; pp. 206–209. [Google Scholar]
- Sekizuka, R.; Koiwai, K.; Saiki, S.; Yamazaki, Y.; Tsuji, T.; Kurita, Y. A virtual training system of a hydraulic excavator using a remote controlled excavator with augmented reality. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017; pp. 893–898. [Google Scholar]
- Bin, F.; Xi, Z.; Yi, C.; Ping, W.G. Construction safety education system based on virtual reality. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563. [Google Scholar] [CrossRef]
- Checa, D.; Bustillo, A. A review of immersive virtual reality serious games to enhance learning and training. Multimed. Tools Appl. 2020, 79, 5501–5527. [Google Scholar] [CrossRef] [Green Version]
- Maas, M.J.; Hughes, J.M. Virtual, augmented and mixed reality in K–12 education: A review of the literature. Technol. Pedagog. Educ. 2020, 29, 231–249. [Google Scholar] [CrossRef]
- Dong, S.; Behzadan, A.H.; Chen, F.; Kamat, V.R. Collaborative visualization of engineering processes using tabletop augmented reality. Adv. Eng. Softw. 2013, 55, 45–55. [Google Scholar] [CrossRef]
- Zou, P.X.W.; Zhang, G.; Wang, J. Understanding the key risks in construction projects in China. Int. J. Proj. Manag. 2007, 25, 601–614. [Google Scholar] [CrossRef]
- Mutis, I.; Ambekar, A. Challenges and enablers of augmented reality technology for in situ walkthrough applications. J. Inf. Technol. Constr. 2020, 25, 55–71. [Google Scholar] [CrossRef]
- Andri, C.; Alkawaz, M.H.; Sallow, A.B. Adoption of mobile augmented reality as a campus tour application. Int. J. Eng. Technol. 2018, 7, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Elghaish, F.; Matarneh, S.; Talebi, S.; Kagioglou, M.; Hosseini, M.R.; Abrishami, S. Toward digitalization in the construction industry with immersive and drones technologies: A critical literature review. Smart Sustain. Built Environ. 2020. [Google Scholar] [CrossRef]
- Al-Hussein, M. Application of Virtual Reality in Task Training in the Construction Manufacturing Industry. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction 2019, Banff, AB, Canada, 21–24 May 2019; pp. 796–803. [Google Scholar]
Technique | Virtual Reality | Augmented Reality | Mixed Reality | |
---|---|---|---|---|
Features | ||||
Virtual/Synthetic content level | High | Low | Medium | |
Real content level | Low | High | High | |
Interaction level | Low | Medium | High | |
Immersive level | High | Medium | Medium |
Considerable Factors | MR | AR |
---|---|---|
Use of haptics while running the application | Good | Average |
Hardware cost | Bad | Good |
Ability of spatial tracking | Average | Average |
Movement of multiple parts in the application | Good | Average |
Large number of objects interacting | Good | Average |
High detail level | Good | Bad |
Accurate depth representation required | Good | Bad |
High immersion level | Good | Bad |
Ease of data sharing among other users | Good | Good |
Easy hardware procurement | Average | Good |
Surrounding awareness | Bad | Good |
Object placing on various real surfaces | Good | Average |
Devices interaction | Good | Good |
Definitions | Application(s) | |
---|---|---|
BIM with VR |
|
|
BIM with AR |
| |
BIM with MR |
|
Keywords | Occurrences | Total Link Strength |
---|---|---|
Building information modelling | 459 | 2287 |
Architectural design | 362 | 1697 |
Virtual reality | 272 | 1216 |
Construction management | 246 | 1390 |
Augmented reality | 168 | 784 |
Information theory | 106 | 667 |
Visualization | 87 | 510 |
3D computer graphics | 74 | 413 |
Project management | 53 | 330 |
Structural design | 50 | 282 |
Facility management | 44 | 268 |
Information management | 41 | 258 |
Office buildings | 40 | 240 |
Robotics | 35 | 210 |
Lifecycle | 34 | 214 |
Decision making | 34 | 209 |
Mixed reality | 24 | 131 |
Semantics | 22 | 106 |
Research Domains | Code | Number | Percentage | References |
---|---|---|---|---|
Client/Stakeholder domain | RD-1 | 5 | 8 | [184,185,186,187,188] |
Design Exploration domain | RD-2 | 9 | 14 | [42,49,67,189,190,191,192,193,194] |
Design Analysis domain | RD-3 | 9 | 14 | [6,53,99,147,195,196,197,198,199] |
Construction Planning domain | RD-4 | 6 | 9 | [21,22,57,61,200,201] |
Construction Monitoring domain | RD-5 | 6 | 9 | [123,124,141,202,203,204] |
Construction Health and Safety domain | RD-6 | 8 | 12 | [129,150,205,206,207,208,209,210] |
Facility & Management domain | RD-7 | 9 | 14 | [18,136,189,211,212,213,214,215,216] |
Education & Training domain | RD-8 | 12 | 20 | [20,91,93,95,108,145,153,217,218,219,220,221] |
Total | 64 | 100 |
Strengths | |||
---|---|---|---|
RD-1 Client/Stakeholder | RD-2 Design Exploration | RD-3 Design Analysis | RD-4 Construction Planning |
·Better feedback ·Client engagement ·Realistic experience ·Improved marketing ·Selection of contractors ·Social and emotional impact ·Pros and cons of design ·Saves travelling time ·Future interventions ·Reduced risk and cost ·Ergonomic testing ·Buyer experience | ·Easy review ·Better update ·Design decisions ·Avoids remodelling ·Spatial understanding ·Size and scale knowledge ·Interior design review ·Barrier free design ·Risk identification ·Clash detection ·Smooth editing | ·MEP knowledge ·Clear design intent ·Review and analyze design ·Luminance understanding ·Daylight presence fluency ·Review of surface texture ·Potential risk knowledge ·Analyze spatial nature ·Design flaw reviews ·Window wall ratio ·Thermal analysis | ·Less errors ·Better schedule ·Facilitates planning ·Helps waste reduction ·Material procurement ease ·Ergonomic scale testing ·Better material choice ·Reduces conflicts ·Task sequencing ·Reduces cost |
RD-5 Construction Monitoring | RD-6 Construction H/S | RD-7 Facility/Management | RD-8 Education/Training |
·Real time site status ·Reduces error at site ·Human scale observation ·Detection of schedule lag ·Aid construction monitoring ·Remote progress checking ·Assists in virtual guides ·Workers competency ·Avoids possible risks ·Reduce overall cost ·Lowers mistakes ·Save man hours | ·Reduces risk ·Risk recognition ·Safety inspection ·Evacuation simulation ·Increases productivity ·Human building interface ·Avoids potential threat ·Hazard identification ·Less material waste ·Fall risk simulation ·Saves time and cost | ·Repair processes ·Assembling tasks ·Disassembling tasks ·Tedious task easiness ·Supplying visual cues ·Remote operation facility ·Technical information ·Risky tasks simulation ·Building maintenance ·Built asset knowledge ·Reduction in risks ·Objects tracking | ·Increases skill ·Ease of simulation ·Awareness of tasks ·Fall hazard scenarios ·Scenario based learning ·Easy hazards training ·Reduce travelling cost ·Spatial understanding ·No material waste ·Aids student skill ·Low capital |
Weaknesses | |||
---|---|---|---|
RD-1 Client/Stakeholder | RD-2 Design Exploration | RD-3 Design Analysis | RD-4 Construction Planning |
·No standards ·Location errors ·Motion sickness ·Difficulty in sharing ·High hardware price ·Substantial time required ·Inaccurate registration ·Movement constraints ·User interface issues ·Fickle luminance ·Isolation feeling ·Software costs | ·Low quality ·Low collaboration ·Difficult archive process ·Content creation difficulty ·No complete hardware suit ·High skillset required ·Model linkage obstacle ·Model size constraints ·Interoperability issues ·Lack of standards ·Short battery life ·IP issues | ·Cost of setting up ·Low battery life ·File uploading time ·Data storage difficulty ·Changing while viewing ·Movement limited by wiresInternet bandwidth issues ·Content creation is tough ·Time required is high ·No complete package ·Time lag in viewing ·Cognitive issues ·Motion sickness | ·Lack of accreditation ·Hardware requirement ·Metadata viewing issues ·High level of investment ·Issues in interoperability ·Number of devices required ·Less battery life hindrance ·High expertise required ·Acoustical senses issues ·Schedule upgradation ·Model update issues ·Low visual senses |
RD-5 Construction Monitoring | RD-6 Construction H/S | RD-7 Facility/Management | RD-8 Education/Training |
·Fragile when using ·Disorientation issues ·Low resolution display ·Additional cognitive load ·Unfit to wear with hardhat ·Cost of adoption for many ·Site internet limitations ·Battery drains quickly ·Uncomfortable nature ·File size limitations ·Job security fear | ·Mobility issues at site ·Location errors issues ·Requires steep learning ·Depth analysis problem ·Chance of physical impact ·Lack of current standards ·Luminance inconsistency ·Sensory needs adds cost ·Feebleness while at site ·Meta data accessibility | ·Data archiving issues ·Low level of accuracy ·Low contextual awareness ·Long use cause nausea ·Object registration issues ·Inconsistent battery life ·Headsets hard to wear ·High skill required ·Low update speed | ·High training cost ·Evaluation process ·Less skilled trainers ·Difficulty in content creation ·Low government partaking ·Need for powered machinery ·Lack of systematic approach ·Lack of social interaction ·Fragmented nature ·Lack of standards |
Opportunities | |||
---|---|---|---|
RD-1 Client/Stakeholder | RD-2 Design Exploration | RD-3 Design Analysis | RD-4 Construction Planning |
·Agile gadgets ·Real scale built asset ·Wireless technologies ·Affordability in price ·Scalability and flexibility ·Advances in techniques ·Productivity enhancement ·Organisation reputation ·Spatial comprehension ·Devices comfortability ·Return on investment ·Escalation in business ·Visual realism | ·Knowledge sharing ·Software knowledge ·Common data formats ·Resolve interoperability ·Integration with gaming ·Content creation skills ·Data trust with each other ·Data transfer classification ·Enhanced virtual meetings ·Cloud based management ·Avatars communications ·Synchronisation of data ·Proof of concepts | ·Haptic control boost ·Olfactory simulations ·Sustainable experiences ·Sense and feeling of space ·Visual cues enhancements ·Advance user experience ·Standardised approaches ·Microclimate experience ·File size enhancements ·Better headsets for use ·Situational awareness | ·Schedule prediction ·Utilisation of resources ·Non graphical data skill ·Enhanced collaboration ·Adding cyber physical order ·Adding RFID and GIS system ·Constructability analysis ·Cloud based interactions ·Complete set up package ·Utilising 5G technology ·Mixing computer vision ·Better delivery of asset |
RD-5 Construction Monitoring | RD-6 Construction H/S | RD-7 Facility/Management | RD-8 Education/Training |
·Network latency boost ·Contextual procedures ·Machinery teleoperation ·Remote progress monitor ·Integrating computer vision ·AI mixing for well knowhow ·Safety approved hardware ·Drone technology mixing ·New simulation methods ·Better resolution devices ·Light weight of headsets ·IoT sensors integration ·Increased field of view | ·Sensory tools boost ·Headsets battery life ·View range of headsets ·Enhancing image of AEC ·Boosts cognitive behaviour ·Tracking device integration ·Better metadata integration ·Better site emergency plans ·Knowing workers stimulus ·Better job hazard analysis ·Gaming industry mixing ·Controlling technologies | ·Boost in field of view ·Integration with BMS ·Increase in battery life ·Information accuracies ·Data sharing standards ·Boost for colder site regions ·Better wayfinding methods ·Integrating drone and UAV ·Low-cost of hard/softwares ·Lift in common platforms ·Enhanced data access | ·Reduces risk fear ·Clarification in design ·Motivates new students ·Improves industry image ·Costs saving on materials ·Boosts sustainable learning ·Make student industry ready ·Enhances worker’s ability ·Cost saving on machinery ·Cognitive enhancement ·Safe learning platforms ·Learning by doing |
Threats | |||
---|---|---|---|
RD-1 Client/Stakeholder | RD-2 Design Exploration | RD-3 Design Analysis | RD-4 Construction Planning |
·Capital risk ·Risk of injury ·License agreements ·Detrimental health effects ·Intellectual property rights ·Rapid technology change ·Outdated technique issue ·Legal fraud issues ·Legal liabilities | ·Job security issues ·Legitimacy of content ·Unsustainable practice ·Overlooked determination ·Risk of data fragmentation ·Long use cause bad health ·No standards cause risks ·Hefty cost involved ·Security of data | ·Glare issues ·Motion sickness ·Striking graphics ·Content fragmentation ·Luminance affects eyes ·Lack of near awareness ·Labour duplication ·Visual discomfort ·Low field of view | ·Disintegrated use ·No safety guidelines ·Metadata susceptibility ·No liabilities in contract ·Lack of multiuser interface ·Disjointed consumption ·Less trained workforce ·Risk of cyber hacking ·Data vulnerability ·Threat of job loss |
RD-5 Construction Monitoring | RD-6 Construction H/S | RD-7 Facility/Management | RD-8 Education /Training |
·Lack of sensory inputs ·Nearby cut off in VR ·Lack of open standards ·Job loss threat in workers ·Situational warnings absent ·Lack of multimodal senses ·Unequipped XR devices ·Network latency at site ·Imperviousness in data | ·Flashing lights ·VR blocks near view ·Nausea among workers ·Dizziness when used long ·Seizure issues for workers ·Vulnerability to hackers ·Lack of content warning ·Sudden graphic change ·Cybersecurity issues ·Disorientation issues | ·Motion sickness ·Fragmented supplies ·Lack of social interaction ·Situational awareness risk ·Long use cause vision snags ·Cognitive load by focussing ·Rough use cause price issue ·Striking graphics concern ·Difficult with hardhats | ·Headsets strains ·High cost hindrance ·Technology change barrier ·Social interface discord ·Lack of many educators ·Uncertainty and disbelief ·Time required is high ·Fragmented content ·Stress on students |
User Centered Comfort Devices | View Field and Battery Capabilities | Accuracy and Tracking Process | Considerable Storage Capacities | Enhanced Positioning and Mapping | ||
---|---|---|---|---|---|---|
Limitations |
|
|
|
|
| Immersive Techniques Devices |
Needs/Future |
|
|
|
|
| |
Spatial-Temporal Visualisation | Data Record Capabilities | Standards Framing | Cybersecurity and Privacy | Integration with Other BS Systems | ||
Limitations |
|
|
|
|
| Graphical and Non-Graphical Data |
Needs/Future |
|
|
|
|
| |
BIM Model Reform in Real Time | Simulations Predictions | Robotic Teleoperation | Multiple Sensory Integration | IoT Devices Combination | ||
Limitations |
|
|
|
|
| Responsive and Integrative Prospects |
Needs/Future |
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Sepasgozar, S.; Liu, T.; Yu, R. Integration of BIM and Immersive Technologies for AEC: A Scientometric-SWOT Analysis and Critical Content Review. Buildings 2021, 11, 126. https://doi.org/10.3390/buildings11030126
Khan A, Sepasgozar S, Liu T, Yu R. Integration of BIM and Immersive Technologies for AEC: A Scientometric-SWOT Analysis and Critical Content Review. Buildings. 2021; 11(3):126. https://doi.org/10.3390/buildings11030126
Chicago/Turabian StyleKhan, Ayaz, Samad Sepasgozar, Tingting Liu, and Rongrong Yu. 2021. "Integration of BIM and Immersive Technologies for AEC: A Scientometric-SWOT Analysis and Critical Content Review" Buildings 11, no. 3: 126. https://doi.org/10.3390/buildings11030126
APA StyleKhan, A., Sepasgozar, S., Liu, T., & Yu, R. (2021). Integration of BIM and Immersive Technologies for AEC: A Scientometric-SWOT Analysis and Critical Content Review. Buildings, 11(3), 126. https://doi.org/10.3390/buildings11030126