Constitutive Model of Uniaxial Compressive Behavior for Roller-Compacted Concrete Using Coal Bottom Ash Entirely as Fine Aggregate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Proportion and Specimen Product
2.3. Test Setup
3. Results and Discussion
3.1. Compressive Strength
3.2. Splitting Tensile Strength
3.3. Relationship between Compressive Strength and Splitting Tensile Strength
3.4. Elastic Modulus
3.5. Uniaxial Compressive Stress–Strain Relationship
3.6. Uniaxial Compressive Constitutive Model and Damage Variable
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gooi, S.; Mousa, A.A.; Kong, D. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete. J. Clean. Prod. 2020, 268, 121752. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, H.Y.; Yang, K.H.; Ha, J.S. Effect of concrete unit weight on the mechanical properties of bottom ash aggregate concrete. Constr. Build. Mater. 2021, 273, 121998. [Google Scholar] [CrossRef]
- Doğan-Sağlamtimur, N.; Bilgil, A.; Szechyńska-Hebda, M.; Parzych, S.; Hebda, M. Eco-friendly fired brick produced from industrial ash and natural clay: A study of waste reuse. Materials 2021, 14, 877. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Q.; Xiao, Z.; Fan, L.; Wang, D.; Li, X.; Du, J.; Cheng, J. Behaviors of chromium in coal-fired power plants and associated atmospheric emissions in guizhou, southwest china. Atmosphere 2020, 11, 951. [Google Scholar] [CrossRef]
- Abbas, S.; Arshad, U.; Abbass, W.; Nehdi, M.L.; Ahmed, A. Recycling untreated coal bottom ash with added value for mitigating alkali–silica reaction in concrete: A sustainable approach. Sustainability 2020, 12, 10631. [Google Scholar] [CrossRef]
- Jeon, D.; Yum, W.S.; Song, H.; Yoon, S.; Bae, Y.; Oh, J.E. Use of coal bottom ash and cao-cacl2-activated ggbfs binder in the manufacturing of artificial fine aggregates through cold-bonded pelletization. Materials 2020, 13, 5598. [Google Scholar] [CrossRef]
- Savadogo, N.; Messan, A.; Hannawi, K.; Prince Agbodjan, W.; Tsobnang, F. Durability of mortar containing coal bottom ash as a partial cementitious resource. Sustainability 2020, 12, 8089. [Google Scholar] [CrossRef]
- Muthusamy, K.; Rasid, M.H.; Jokhio, G.A.; Budiea, A.M.A.; Hussin, M.W.; Mirza, J. Coal bottom ash as sand replacement in concrete: A review. Constr. Build. Mater. 2020, 236, 117507. [Google Scholar] [CrossRef]
- Ming, X.; Cao, M.; Li, L.; Yin, H. Self-healing properties of thermally damaged cement blends. Aci. Mater. J. 2021, 118, 161–172. [Google Scholar]
- Cao, M.; Li, L.; Xu, L. Relations between rheological and mechanical properties of fiber reinforced mortar. Comput. Concr. 2017, 20, 449–459. [Google Scholar]
- Zhang, C.; Xia, C.; Wang, Z.; Zhang, K. Tensile properties of hybrid fiber-reinforced strain-hardening cementitious composite exposed to elevated temperature. J. Build. Eng. 2021, 34, 101886. [Google Scholar] [CrossRef]
- Kim, H.K.; Jang, J.G.; Choi, Y.C.; Lee, H.K. Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing. Constr. Build. Mater. 2014, 71, 334–343. [Google Scholar] [CrossRef]
- Siddique, R. Use of municipal solid waste ash in concrete. Resour. Conserv. Recycl. 2010, 55, 83–91. [Google Scholar] [CrossRef]
- Alderete, N.M.; Joseph, A.M.; Van den Heede, P.; Matthys, S.; De Belie, N. Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability. Resour. Conserv. Recycl. 2021, 167, 105356. [Google Scholar] [CrossRef]
- Muthusamy, K.; Jamaludin, N.F.A.; Kamaruzzaman, M.N.; Ahmad, M.Z.; Zamri, N.A.; Budiea, A.M.A. Compressive strength of palm oil clinker lightweight aggregate concrete containing coal bottom ash as sand replacement. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Bao, J.; Li, S.; Zhang, P.; Ding, X.; Xue, S.; Cui, Y.; Zhao, T. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete. Constr. Build. Mater. 2020, 239, 117845. [Google Scholar] [CrossRef]
- Bao, J.; Xue, S.; Zhang, P.; Dai, Z.; Cui, Y. Coupled effects of sustained compressive loading and freeze-thaw cycles on water penetration into concrete. Struct. Concr. 2020. [Google Scholar] [CrossRef]
- Bao, J.; Li, S.; Zhang, P.; Xue, S.; Cui, Y.; Zhao, T. Influence of exposure environments and moisture content on water repellency of surface impregnation of cement-based materials. J. Mater. Res. Technol. 2020, 9, 12115–12125. [Google Scholar] [CrossRef]
- Du, X.; Li, Z.; Han, J.; Tan, C. Effect of different humidity-controlling modes on microstructure and compressive behavior of ordinary concrete. J. Mater. Civ. Eng. 2020, 32, 4019337. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Cao, M.; Tang, Y.; Zhang, Z. Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900 °C). Fractals 2021, 29, 2140001. [Google Scholar] [CrossRef]
- Li, L.; Gao, D.; Li, Z.; Cao, M.; Gao, J.; Zhang, Z. Effect of high temperature on morphologies of fibers and mechanical properties of multi-scale fiber reinforced cement-based composites. Constr. Build. Mater. 2020, 261, 120487. [Google Scholar] [CrossRef]
- Li, L.; Cao, M.; Yin, H. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cem. Concr. Compos. 2019, 104, 103350. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Yang, I.; Park, J. A study on the thermal properties of high-strength concrete containing cba fine aggregates. Materials 2020, 13, 1493. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Siddique, R. Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. J. Clean. Prod. 2016, 112, 620–630. [Google Scholar] [CrossRef]
- Cheng, F.; Kodur, V.K.R.; Wang, T. Stress-strain curves for high strength concrete at elevated temperatures. J. Mater. Civ. Eng. 2004, 16, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Cao, M.; Xie, C.; Yin, H. Effects of caco3 whisker, hybrid fiber content and size on uniaxial compressive behavior of cementitious composites. Struct. Concr. 2019, 20, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Libre, N.A.; Khayat, K.H. Factors affecting air-entrainment and performance of roller compacted concrete. Constr. Build. Mater. 2020, 259, 120413. [Google Scholar] [CrossRef]
- ASTM International. Standard specification for concrete aggregates. In ASTM C33/C33M—18; ASTM International: West Conshohocken, PA, USA, 2018; Volume 66, pp. 89–97. [Google Scholar]
- Tavakoli, D.; Dehkordi, R.S.; Divandari, H.; de Brito, J. Properties of roller-compacted concrete pavement containing waste aggregates and nano SiO2. Constr. Build. Mater. 2020, 249, 118747. [Google Scholar] [CrossRef]
- Ou, Y.C.; Tsai, M.S.; Liu, K.Y.; Chang, K.C. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. J. Mater. Civil Eng. 2012, 24, 207–215. [Google Scholar] [CrossRef]
- Cao, M.; Li, L.; Khan, M. Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites. Mater. Constr. 2018, 68, 156. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Zhang, C.; Li, Y.; Wei, J. Using calcium carbonate whisker in hybrid fiber-reinforced cementitious composites. J. Mater. Civ. Eng. 2015, 27, 4014139. [Google Scholar] [CrossRef]
- CEB-FIP. Model Code for Concrete Structures 2010; International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2010. [Google Scholar]
- Mazars, J.; Pijaudier-Cabot, G. Continuum damage theory—application to concrete. J. Eng. Mech. 1989, 115, 345–365. [Google Scholar] [CrossRef]
- Dong, S.; Han, B.; Yu, X.; Ou, J. Constitutive model and reinforcing mechanisms of uniaxial compressive property for reactive powder concrete with super-fine stainless wire. Compos. Part B Eng. 2019, 166, 298–309. [Google Scholar] [CrossRef]
- Ning, X.; Ding, Y. Effect of steel fiber on damage constitutive model of concrete under uniaxial compression. J. Build. Mater. 2015, 18, 214–220. [Google Scholar]
- Gao, Z.; Huang, D.; Zhao, G. An orthotropic damage constitutive model for RCC. J. Hydraul. Eng. 2001, 244, 58–64. [Google Scholar]
Mix No. | Cement | Bottom Ash | Coarse Aggregate | Cement | Bottom Ash | Coarse Aggregate |
---|---|---|---|---|---|---|
% | kg m−3 | |||||
S9-1 | 9 | 41 | 50 | 187 | 853 | 1041 |
S9-2 | 9 | 36 | 55 | 191 | 764 | 1160 |
S9-3 | 9 | 31 | 60 | 192 | 662 | 1281 |
S12-1 | 12 | 38 | 50 | 254 | 803 | 1057 |
S12-2 | 12 | 33 | 55 | 256 | 704 | 1173 |
S12-3 | 12 | 28 | 60 | 260 | 608 | 1302 |
S15-1 | 15 | 35 | 50 | 328 | 765 | 1093 |
S15-2 | 15 | 30 | 55 | 332 | 664 | 1217 |
S15-3 | 15 | 25 | 60 | 335 | 558 | 1339 |
G1-1 | G1-2 | G1-3 | G1-4 |
---|---|---|---|
S9-1-1-1 | S9-1-2-1 | S9-1-3-1 | S9-1-4-1 |
S9-1-1-2 | S9-1-2-2 | S9-1-3-2 | S9-1-4-2 |
S9-1-1-3 | S9-1-2-3 | S9-1-3-3 | S9-1-4-3 |
The Changing Range of CBA | Reduction Rate of Splitting Tensile Strength (%) | Reduction Rate of Compressive Strength (%) | |||
---|---|---|---|---|---|
Surcharge = 20 lb | Surcharge = 40 lb | Surcharge = 20 lb | Surcharge = 40 lb | ||
9% cement content | CBA from 31 to 36% | 15.22 | 21.00 | 18.87 | 13.82 |
CBA from 36 to 41% | 57.60 | 43.04 | 10.07 | 13.67 | |
12% cement content | CBA from 28 to 33% | 38.51 | 44.45 | 44.62 | 45.00 |
CBA from 33 to 38% | 57.87 | 54.41 | 55.39 | 54.83 | |
15% cement content | CBA from 25 to 30% | 24.59 | 19.86 | 40.80 | 8.23 |
CBA from 30 to 35% | 38.26 | 25.86 | 31.36 | 49.68 |
Group | Peak Strain | Peak Stress | Elastic Modulus | m | η | |
---|---|---|---|---|---|---|
50% Coarse aggregate | 9% Cement, Surcharge = 20 lb | 0.00132 | 2.51506 | 4.5017 | 1.163074 | 0.001503 |
9% Cement, Surcharge = 40 lb | 0.00197 | 2.51739 | 4.4308 | 0.804252 | 0.001503 | |
12% Cement, Surcharge = 20 lb | 0.00122 | 3.26293 | 9.7559 | 0.772739 | 0.000874 | |
12% Cement, Surcharge = 40 lb | 0.00214 | 3.86745 | 8.382 | 0.651764 | 0.00111 | |
15% Cement, Surcharge = 20 lb | 0.00211 | 8.3839 | 10.917 | 0.989417 | 0.002087 | |
15% Cement, Surcharge = 40 lb | 0.00231 | 8.78415 | 9.3641 | 1.109654 | 0.002537 | |
55% Coarse aggregate | 9% Cement, Surcharge = 20 lb | 0.00138 | 2.97761 | 4.0173 | 1.608823 | 0.001855 |
9% Cement, Surcharge = 40 lb | 0.00138 | 3.27761 | 3.5874 | 2.42485 | 0.001988 | |
12% Cement, Surcharge = 20 lb | 0.00230 | 6.78966 | 7.9287 | 1.012148 | 0.002328 | |
12% Cement, Surcharge = 40 lb | 0.00137 | 6.38761 | 8.6624 | 1.614355 | 0.001843 | |
15% Cement, Surcharge = 20 lb | 0.00329 | 10.65057 | 14.325 | 0.672368 | 0.001823 | |
15% Cement, Surcharge = 40 lb | 0.00197 | 17.78611 | 15.484 | 1.853833 | 0.002748 | |
60% Coarse aggregate | 9% Cement, Surcharge = 20 lb | 0.0013 | 3.43541 | 5.1618 | 1.493622 | 0.001701 |
9% Cement, Surcharge = 40 lb | 0.0015 | 3.53818 | 3.9754 | 1.91579 | 0.002106 | |
12% Cement, Surcharge = 20 lb | 0.0036 | 11.91005 | 11.791 | 0.786852 | 0.002655 | |
12% Cement, Surcharge = 40 lb | 0.0018 | 12.78777 | 13.212 | 1.611804 | 0.00242 | |
15% Cement, Surcharge = 20 lb | 0.0021 | 19.24688 | 16.175 | 1.760392 | 0.002896 | |
15% Cement, Surcharge = 40 lb | 0.0023 | 25.7535 | 17.012 | 2.390871 | 0.003312 |
Strain to Peak Strain Ratio | 0.3 | 0.5 | 1 | 1.2 | 1.5 |
Experimental Stress | 13.44262295 | 17.29964 | 20.72404 | 20.27322 | 19.05738 |
Theoretical Stress | 11.94926377 | 16.70958 | 20.70002 | 20.28297 | 18.54175 |
Theoretical to Experimental Stress Ratio | 0.888908646 | 0.965892 | 0.998841 | 1.000481 | 0.972943 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, L.; Bindiganavile, V. Constitutive Model of Uniaxial Compressive Behavior for Roller-Compacted Concrete Using Coal Bottom Ash Entirely as Fine Aggregate. Buildings 2021, 11, 191. https://doi.org/10.3390/buildings11050191
Li Y, Li L, Bindiganavile V. Constitutive Model of Uniaxial Compressive Behavior for Roller-Compacted Concrete Using Coal Bottom Ash Entirely as Fine Aggregate. Buildings. 2021; 11(5):191. https://doi.org/10.3390/buildings11050191
Chicago/Turabian StyleLi, Yu, Li Li, and Vivek Bindiganavile. 2021. "Constitutive Model of Uniaxial Compressive Behavior for Roller-Compacted Concrete Using Coal Bottom Ash Entirely as Fine Aggregate" Buildings 11, no. 5: 191. https://doi.org/10.3390/buildings11050191
APA StyleLi, Y., Li, L., & Bindiganavile, V. (2021). Constitutive Model of Uniaxial Compressive Behavior for Roller-Compacted Concrete Using Coal Bottom Ash Entirely as Fine Aggregate. Buildings, 11(5), 191. https://doi.org/10.3390/buildings11050191