Influence of Fiber Shape and Volume Content on the Performance of Reactive Powder Concrete (RPC)
Abstract
:1. Introduction
2. Theoretical Hypothesis
3. Experimental Verification
3.1. Raw Materials
3.2. Steel Fiber
3.3. Preparation of RPC
3.4. Test Methods
3.4.1. Test of Fluidity
3.4.2. Pullout Bond Test
3.4.3. Test of Flexural Strength
3.4.4. Test of Compressive Strength
4. Experimental Results and Analysis
4.1. The Influence of Closed Steel Fiber on RPC’s Fluidity
4.2. The Influence of Steel Fiber’s Shape on the Bond Strength
4.3. The Influence of Steel Fiber’s Shape on the Flexural Strength of RPC
4.3.1. Influence of Open Steel Fiber on RPC’s Flexural Strength
4.3.2. Influence of Closed Steel Fiber
4.4. The Influence of Steel Fiber’s Shape on the Compressive Strength of RPC
4.4.1. Influence of Open Fiber on RPC’s Compressive Strength
4.4.2. The Influence of Closed Steel Fiber
4.5. Comparison of Closed and Open Steel Fiber
5. The Utilization of Hybrid Fibers of Open and Closed Steel Fiber
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibers on compressive and tensile strength of ultra-high performance concrete: A review. Construct. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra-high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kim, S.; Park, G.-J.; Park, J.-J.; Kim, S.-W. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos. Struct. 2017, 174, 375–388. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Kang, S.-T.; Lee, Y.; Park, Y.-D.; Kim, J.-K. Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Compos. Struct. 2010, 92, 61–71. [Google Scholar] [CrossRef]
- Guerini, V.; Conforti, A.; Plizzari, G.; Kawashima, S. Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers 2018, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-W.; Choi, J.; Lee, S.-C. Probabilistic Analysis for Strain-Hardening Behavior of High-Performance Fiber-Reinforced Concrete. Materials 2019, 12, 2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 2019, 198, 479–493. [Google Scholar] [CrossRef]
- Chalioris, E.C.; Parthena-Maria, K.K.; Karayannis, C.G. Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams: An Experimental Study. Materials 2019, 12, 1398. [Google Scholar] [CrossRef] [Green Version]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Banthia, N.; Sappakittipakorn, M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. 2007, 37, 1366–1372. [Google Scholar] [CrossRef]
- Al-Baghdadi, H.; Al-Merib, F.; Ibrahim, A.; Hassan, R.; Hussein, H. Effects of Coarse Aggregate Maximum Size on Synthetic/Steel Fiber Reinforced Concrete Performance with Different Fiber Parameters. Buildings 2021, 11, 158. [Google Scholar] [CrossRef]
- Lau, C.K.; Chegenizadeh, A.; Htut, T.N.S.; Nikraz, H. Performance of the Steel Fibre Reinforced Rigid Concrete Pavement in Fatigue. Buildings 2020, 10, 186. [Google Scholar] [CrossRef]
- Wang, R.; Gao, X. Relationship between flowability, entrapped air content and strength of UHPC mixtures containing different dosage of steel fiber. Appl. Sci. 2016, 6, 216. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shi, C.J.; Wu, Z.; Xiao, J.; Huang, Z.; Fang, Z. A review on ultra-high-performance concrete: Part II. Hydration, microstructure and properties. Constr. Build. Mater. 2015, 96, 368–377. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, M.; Li, C.; Li, J.; Zhao, X. A multi-index synthetical evaluation of pull-out behaviors of hooked-end steel fiber embedded in mortars. Constr. Build. Mater. 2021, 276, 122219. [Google Scholar] [CrossRef]
- Wu, K.; Chen, P.; Lin, J.; Zhao, J.; Zheng, H. Experimental study on the interfacial bond strength and energy dissipation capacity of steel and steel fibre reinforced concrete (SSFRC) structures. Eng. Struct. 2021, 235, 112094. [Google Scholar] [CrossRef]
- Wu, K.; Lin, S.; Xu, C.; Chen, C.; Chen, F. Energy dissipation and debonding mechanism of steel and steel fibre reinforced concrete composite beams. Eng. Struct. 2021, 226, 111353. [Google Scholar] [CrossRef]
- Tokgoz, S.; Dundar, C.; Tanrikulu, A.K. Experimental behaviour of steel fiber high strength reinforced concrete and composite columns. J. Constr. Steel Res. 2012, 74, 98–107. [Google Scholar] [CrossRef]
- Kravchuk, R.; Landis, E.N. Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete. Constr. Build. Mater. 2018, 176, 531–538. [Google Scholar] [CrossRef]
- Landis, E.N.; Kravchuk, R.; Loshkov, D. Experimental investigations of internal energy dissipation during fracture of fiber-reinforced ultra-high-performance concrete. Front. Struct. Civ. Eng. 2019, 13, 190–200. [Google Scholar] [CrossRef]
- Haido, J.H.; Yousif, S.T.; Tayeh, B.A. Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios. Adv. Concr. Constr. 2021, 11, 89–98. [Google Scholar]
- Choi, W.-C.; Jung, K.-Y.; Jang, S.-J.; Yun, H.-D. The Influence of Steel Fiber Tensile Strengths and Aspect Ratios on the Fracture Properties of High-Strength Concrete. Materials 2019, 12, 2105. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, J.; Andalibi, K.; Gencel, O.; Maleki, F.K.; Maleki, V.A. Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete. Constr. Build. Mater. 2021, 271, 121531. [Google Scholar] [CrossRef]
- Sun, L.; Wei, Z.; Li, W.; Xiang, J. Seismic behaviour of cross-shaped steel fibre reinforced concrete columns. Arch. Civ. Mech. Eng. 2020, 20, 1–19. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Fan, C.; Wang, Z. Effect of Surface Shape and Content of Steel Fiber on Mechanical Properties of Concrete. Adv. Civ. Eng. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Kim, J.J.; Yoo, D.Y. Effects of fiber shape and distance on the pullout behavior of steel fibers embedded in ultra-high-performance concrete. Cem. Concr. Compos. 2019, 103, 213–223. [Google Scholar] [CrossRef]
- Zhou, R.; Jin, Y. Study on Mechanical Properties of Concrete with Different Steel Fiber Content. Int. J. Multiphysics 2021, 15, 87–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wang, J.; Wu, B. Effect of Hybrid Steel-Basalt Fiber on Behaviors of Manufactured Sand RPC and Fiber Content Optimization Using Center Composite Design. Adv. Civ. Eng. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, C.; Zhou, J. Influence of the Steel Fiber Content on the Flexural Fatigue Behavior of Recycled Aggregate Concrete. Adv. Civ. Eng. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr. Build. Mater. 2015, 75, 429–441. [Google Scholar] [CrossRef]
- Alsalman, A.; Dang, C.N.; Hale, W.M. Development of ultra-high performance concrete with locally available materials. Constr. Build. Mater. 2017, 133, 135–145. [Google Scholar] [CrossRef]
- Chun, B.; Yoo, D.Y. Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete. Compos. B Eng. 2019, 162, 344–360. [Google Scholar] [CrossRef]
- Erdogdu, S.; Kandil, U.; Nayir, S. Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete. Adv. Concr. Constr. 2019, 8, 139–144. [Google Scholar]
- Ren, G.; Wu, H.; Fang, Q.; Liu, J. Effects of steel fiber content and type on static mechanical properties of UHPCC. Constr. Build. Mater. 2018, 163, 826–839. [Google Scholar] [CrossRef]
- Olivito, R.S.; Zuccarello, F.A. An experimental study on the tensile trength of steel fiber reinforced concrete. Compos. Part B Eng. 2010, 41, 246–255. [Google Scholar] [CrossRef]
- Kytinou, V.K.; Chalioris, C.E.; Karayannis, C.G.G.; Elenas, A. Effect of Steel Fibers on the Hysteretic Performance of Concrete Beams with Steel Reinforcement—Tests and Analysis. Materials 2020, 13, 2923. [Google Scholar] [CrossRef]
- Kytinou, V.K.; Chalioris, C.E.; Karayannis, C.G. Analysis of Residual Flexural Stiffness of Steel Fiber-Reinforced Concrete Beams with Steel Reinforcement. Materials 2020, 13, 2698. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.-Y.; Banthia, N.; Yoon, Y.-S. Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete. Cem. Concr. Compos. 2016, 74, 71–87. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Khayat, K.H. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos. Part B Eng. 2019, 174, 107021. [Google Scholar] [CrossRef]
- Barnett, S.J.; Lataste, J.F.; Parry, T.; Millard, S.G.; Soutsos, M.N. Assessment of fiber orientation in ultra high performance fiber reinforced concrete and its effect on flexural strength. Mater. Struct. 2010, 43, 1009–1023. [Google Scholar] [CrossRef]
- Kang, S.-T.; Kim, J.-K. The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC). Cem. Concr. Res. 2011, 41, 1001–1014. [Google Scholar] [CrossRef]
- Lehner, P.; Konečný, P.; Ponikiewski, T. Comparison of Material Properties of SCC Concrete with Steel Fibres Related to Ingress of Chlorides. Crystals 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Khayat, K.H.; Shi, C. How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cem. Concr. Compos. 2018, 90, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Wille, K.; Naama, A.E. Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Mater. J. 2012, 109, 479–488. [Google Scholar]
- Gesoglu, M.; Güneyisi, E.; Muhyaddin, G.F.; Asaad, D.S. Strain hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration. Compos. Part B Eng. 2016, 103, 74–83. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Effect of Hybrid Fibers on Fresh Properties, Mechanical Properties, and Autogenous Shrinkage of Cost-Effective UHPC. J. Mater. Civ. Eng. 2018, 30, 04018030. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Liu, J.; Zhang, Q.; Han, F. Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultra high performance concrete with coarse aggregate. J. Mater. Civ. Eng. 2018, 30, 04018323. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, S.; Kim, J.; Chun, B. An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr. Build. Mater. 2019, 206, 46–61. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kim, M.J.; Kim, S.-W.; Park, J.-J. Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers. Constr. Build. Mater. 2017, 150, 383–394. [Google Scholar] [CrossRef]
- Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [Google Scholar] [CrossRef]
- Wille, K.; Naaman, A.E. Effect of ultra-high-performance concrete on pullout behavior of high-strength brass-coated straight steel fibers. ACI Mater. J. 2013, 110, 451–461. [Google Scholar]
- Katzer, J.; Kobaka, J.; Ponikiewski, T. Influence of Crimped steel fibre on properties of concrete based on an aggregate mix of waste and Natural aggregates. Materials 2020, 13, 1906. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Guo, L.; Ye, S.; Sun, W.; Liu, J. Influence of Hybrid Fiber Reinforcement on Mechanical Properties and Autogenous Shrinkage of an Ecological UHPFRCC. J. Mater. Civ. Eng. 2019, 31, 04019032. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wang, D. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cem. Concr. Compos. 2017, 79, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.-Y.; Kim, S.-W.; Park, J.-J. Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers. Constr. Build. Mater. 2017, 132, 219–229. [Google Scholar] [CrossRef]
- Ellobody, E.; Young, B.; Lam, D. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. J. Constr. Steel Res. 2006, 62, 706–715. [Google Scholar] [CrossRef]
- Peng, F.A.; Shi, C.A.; Yu, B.B. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression. Compos. Struct. 2015, 123, 312–324. [Google Scholar]
- Chinese Standard. Test Method for Fluidity of Cement Mortar. In National Standard of the People’s Republic of China; GB/T 2419-2005; The Standardization Administration of the People’s Republic of China: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Chinese Standard. Method of Testing Cements-Determination of Strength. In National Standard of the People’s Republic of China; GB/T 17671-1999; The State Bureau of Quality and Technical Supervision: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Sahmaran, M.; Yaman, O.I. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash. Constr. Build. Mater. 2007, 21, 150–156. [Google Scholar] [CrossRef]
- Rambo, D.A.S.; Silva, F.D.A.; Filho, R.T. Mechanical behavior of hybrid steel-fiber self-consolidating concrete: Materials and structural aspects. Mater. Des. 2014, 54, 32–42. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | |
---|---|---|---|---|---|---|---|
Cement | 21.83 | 3.59 | 6.3 | 57.8 | 2.61 | 0.84 | 0.23 |
Silica fume | 92.18 | 0.23 | 0.09 | 0.99 | 1.83 | 0.31 | 0.05 |
Fly ash | 46.44 | 38.01 | 3.12 | 7.5 | 0.23 | 0.88 | 0.33 |
Short-Straight | Long-Straight | Semicircular | Circular | Triangular | Rectangular | |
---|---|---|---|---|---|---|
Length (mm) | 10 | 15 | 15 | 31.4 | 30 | 40 |
Diameter (mm) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Specimen | The Shape of Steel Fiber | Volume Content (%) | Number | Enclosed Area (mm2) |
---|---|---|---|---|
Control | No steel fiber | 0.0 | 0 | 0 |
1.0% SS | Short-straight | 1.0. | 680 | 0 |
1.5% SS | 1.5 | 1020 | 0 | |
2.0% SS | 2.0 | 1360 | 0 | |
1.0% LS | Long-straight | 1.0 | 455 | 0 |
1.5% LS | 1.5 | 680 | 0 | |
2.0% LS | 2.0 | 910 | 0 | |
1.0% SC1 | Semicircular | 1.0 | 455 | 0 |
1.5% SC | 1.5 | 680 | 0 | |
2.0% SC | 2.0 | 910 | 0 | |
0.5% CC | Circular | 0.5 | 107 | 8400 |
1.0% CC | 1.0 | 215 | 16,878 | |
1.5% CC | 1.5 | 325 | 25,513 | |
2.0% CC | 2.0 | 432 | 33,912 | |
0.5% TA | Triangular | 0.5 | 115 | 4980 |
1.0% TA | 1.0 | 230 | 9959 | |
1.5% TA | 1.5 | 345 | 14,939 | |
2.0% TA | 2.0 | 460 | 19,918 | |
0.5% RT | Rectangular | 0.5 | 85 | 8500 |
1.0% RT | 1.0 | 170 | 17,000 | |
1.5% RT | 1.5 | 255 | 25,500 | |
2.0% RT | 2.0 | 340 | 34,000 | |
1.0% CC + 0.5% SS | Circular + short-straight | 1.0 + 0.5 | 215 + 340 | 16,878 |
0.5% CC + 1.0% SS | Circular + short-straight | 0.5 + 1.0 | 105 + 170 | 8243 |
Cement | Silica Fume | Fly Ash | Sand | Water | SP |
---|---|---|---|---|---|
553 | 166 | 111 | 1245 | 132 | 50 |
Specimen | Pullout Force per Fiber (kN) | Standard Error (kN) | Length (mm) | Pullout Force per mm (N/mm) |
---|---|---|---|---|
SS | 0.149 | 0.0093 | 10 | 14.9 |
LS | 0.187 | 0.0056 | 15 | 12.5 |
SC | 0.157 | 0.0044 | 15 | 10.5 |
CC | 0.276 | 0.0137 | 31.4 | 8.8 |
RT | 0.403 | 0.0204 | 40 | 10.1 |
TA | 0.249 | 0.0171 | 30 | 8.3 |
Volume Content (%) | Open | Closed | |||||
---|---|---|---|---|---|---|---|
SS | LS | SC | TA | RT | CC | ||
Flexural strength improvement (%) | 1 | 4.26 | 6.52 | 12.03 | 15.54 | 11.28 | 23.81 |
1.5 | 6.77 | 14.29 | 16.54 | 19.01 | 18.04 | 26.06 | |
2 | 20.80 | 17.54 | 22.56 | 20.63 | 23.15 | 30.64 | |
Compressive strength improvement (%) | 1 | 28.52 | 14.26 | 27.81 | 21.93 | 16.04 | 26.20 |
1.5 | 44.92 | 34.05 | 35.47 | 26.56 | 24.60 | 28.34 | |
2 | 48.13 | 40.99 | 42.07 | 28.88 | 24.96 | 31.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Xue, G.; Zhao, X. Influence of Fiber Shape and Volume Content on the Performance of Reactive Powder Concrete (RPC). Buildings 2021, 11, 286. https://doi.org/10.3390/buildings11070286
Wang C, Xue G, Zhao X. Influence of Fiber Shape and Volume Content on the Performance of Reactive Powder Concrete (RPC). Buildings. 2021; 11(7):286. https://doi.org/10.3390/buildings11070286
Chicago/Turabian StyleWang, Chuanlin, Guojie Xue, and Xianbo Zhao. 2021. "Influence of Fiber Shape and Volume Content on the Performance of Reactive Powder Concrete (RPC)" Buildings 11, no. 7: 286. https://doi.org/10.3390/buildings11070286
APA StyleWang, C., Xue, G., & Zhao, X. (2021). Influence of Fiber Shape and Volume Content on the Performance of Reactive Powder Concrete (RPC). Buildings, 11(7), 286. https://doi.org/10.3390/buildings11070286