Mapping Buildings’ Energy-Related Features at Urban Level toward Energy Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Processing
2.1.1. Download and Import of Spatial Datasets in GIS Environment
2.1.2. Selection of the Municipal Area to Be Assessed
2.1.3. Datasets Cleaning
- -
- those whose portion type was different from “on the ground level,” thus referring to not inhabited areas (e.g., balconies, loggias, and underground volumes);
- -
- those having a height below 3 m, set as the minimum one referred to a single-story building (this threshold has been assumed considering that, in Italy, the minimum net floor height is 2.7 m, which generally corresponds to a gross floor height of 3 m, but could be updated based on local peculiarities);
- -
- those not included in any Building.
- -
- those for which Statistical Variables were missing;
- -
- those for which Statistical Variables reported a null number of buildings;
- -
- those having an ID code above 8888880, which refers to fictitious Census Units for locating data of homeless people.
2.1.4. Correlation of Spatial Datasets
2.2. Building Stock Characterization
2.2.1. Assessment of the Prevailing Period of Construction
2.2.2. Assessment of the Built Conditioned Volumes
2.2.3. Assessment of the Built Volume by Use Category
3. Results
3.1. Procedure Application on the Case Study of Milan
3.2. Procedure Validation
3.3. Insights on the Overall Method
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACE | Census Area |
BCen | Buildings Census |
CadB | Cadastre of buildings |
Cart | Cartography |
CENED | Register of Buildings Energy Performance Certificates of Lombardy Region |
DEM | digital elevation model |
EC | European Community |
EPBD | Energy Performance Building Directive |
EPCR | Energy Performance Certificates Register |
EU | European Union |
GCPH | General Census of Population and Houses |
GHG | Greenhouse gas |
GIS | Geographic Information Systems |
INSPIRE | Spatial Information in the European Community |
Istat | National Institution of Statistics |
OSM | Open Street Map |
TDb | Topographic Database |
References
- International Energy Agency (IEA). Energy Technology Perspectives 2016—Towards Sustainable Urban Energy Systems; IEA: Paris, France, 2016. [Google Scholar]
- European Union Parliament and Council. Directive 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; Official Journal of the European Union: Luxembourg, 2018. [Google Scholar]
- Ferrari, S.; Zagarella, F.; Caputo, P.; D’Amico, A. Results of a literature review on methods for estimating buildings energy demand at district level. Energy 2019, 175, 1130–1137. [Google Scholar] [CrossRef]
- Ferrari, S.; Zagarella, F.; Caputo, P.; Bonomolo, M. Assessment of tools for urban energy planning. Energy 2019, 176, 544–551. [Google Scholar] [CrossRef]
- Li, C. 2.09—GIS for Urban Energy Analysis, Comprehensive Geographic Information Systems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Oxford, UK, 2018; pp. 187–195. [Google Scholar]
- Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas. Appl. Energy 2017, 191, 1–9. [Google Scholar] [CrossRef]
- Belussi, L.; Danza, L.; Ghellere, M.; Guazzi, G.; Meroni, I.; Salamone, F. Estimation of building energy performance for local energy policy at urban scale. Energy Procedia 2017, 122, 98–103. [Google Scholar] [CrossRef]
- Buffat, R.; Froemelt, A.; Heeren, N.; Raubal, M.; Hellweg, S. Big data GIS analysis for novel approaches in building stock modelling. Appl. Energy 2017, 208, 277–290. [Google Scholar] [CrossRef]
- Caputo, P.; Costa, G.; Ferrari, S. A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy 2013, 55, 261–270. [Google Scholar] [CrossRef]
- de Oliveira, F.; Schneider, S.; Quiquerez, L.; Lachal, B.; Hollmuller, P. Spatial and temporal characterization of energy demand and resources for an existing and dense urban district in Geneva. Energy Procedia 2017, 122, 259–264. [Google Scholar] [CrossRef]
- Groppi, D.; de Santoli, L.; Cumo, F.; Garcia, D.A. A GIS-based model to assess buildings energy consumption and usable solar energy potential in urban areas. Sustain. Cities Soc. 2018, 40, 546–558. [Google Scholar] [CrossRef]
- Heiple, S.; Sailor, D.J. Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy Build. 2008, 40, 1426–1436. [Google Scholar] [CrossRef] [Green Version]
- Howard, B.; Parshall, L.; Thompson, J.; Hammer, S.; Dickinson, J.; Modi, V. Spatial distribution of urban building energy consumption by end use. Energy Build. 2012, 45, 141–151. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C. Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology. Appl. Energy 2016, 183, 182–192. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Costa, C.; Pina, A.; Santos, M.Y.; Ferrão, P. An urban building database (UBD) supporting a smart city information system. Energy Build. 2018, 158, 244–260. [Google Scholar] [CrossRef]
- Mutani, G.; Delmastro, C.; Gargiulo, M.; Corgnati, S.P. Characterization of building thermal energy consumption at the urban scale. Energy Procedia 2016, 101, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Nageler, P.; Zahrer, G.; Heimrath, R.; Mach, T.; Mauthner, F.; Leusbrock, I.; Schranzhofer, H.; Hochenauer, C. Novel validated method for GIS based automated dynamic urban building energy simulations. Energy 2017, 139, 142–154. [Google Scholar] [CrossRef]
- Quintana, S.; Huang, P.; Han, M.; Zhang, X. A Top-Down Digital Mapping of Spatial-Temporal Energy Use for Municipality-Owned Buildings: A Case Study in Borlänge, Sweden. Buildings 2021, 11, 72. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy consumption and urban texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Torabi Moghadam, S.T.; Toniolo, J.; Mutani, G.; Lombardi, P. A GIS-statistical approach for assessing built environment energy use at urban scale. Sustain. Cities Soc. 2018, 37, 70–84. [Google Scholar] [CrossRef]
- Yeo, I.A.; Yoon, S.H.; Yee, J.J. Development of an urban energy demand forecasting system to support environmentally friendly urban planning. Appl. Energy 2013, 110, 304–317. [Google Scholar] [CrossRef]
- Saretta, E.; Caputo, P.; Frontini, F. An integrated 3D GIS-based method for estimating the urban potential of BIPV retrofit of façades. Sustain. Cities Soc. 2020, 62, 102410. [Google Scholar] [CrossRef]
- Pampuri, L.; Belliardi, M.; Bettini, A.; Cereghetti, N.; Curto, I.; Caputo, P. A method for mapping areas potentially suitable for district heating systems. An application to Canton Ticino (Switzerland). Energy 2019, 189, 116297. [Google Scholar] [CrossRef]
- Caputo, P.; Pasetti, G. Boosting the energy renovation rate of the private building stock in Italy: Policies and innovative GIS-based tools. Sustain. Cities Soc. 2017, 34, 394–404. [Google Scholar] [CrossRef]
- Mastrucci, A.; Baume, O.; Stazi, F.; Leopold, U. Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy Build. 2014, 75, 358–367. [Google Scholar] [CrossRef]
- Sarralde, J.J.; Quinn, D.J.; Wiesmann, D.; Steemers, K. Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renew. Energy 2015, 73, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, J.A.; Schlueter, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Davila, C.C. Urban building energy modeling–A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Caputo, P.; Pasetti, G.; Ferrari, S. Implementation of an urban efficiency index to comprehend post-metropolitan territories—The case of Greater Milan in Italy. Sustain. Cities Soc. 2019, 48, 101565. [Google Scholar] [CrossRef]
- Yang, J.; Tan, K.K.; Santamouris, M.; Lee, S.E. Building energy consumption raw data forecasting using data cleaning and deep recurrent neural networks. Buildings 2019, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Zanotto, V. Defining representative building energy models. In Building Energy Performance Assessment in Southern Europe; Springer: Cham, Switzerland, 2016; pp. 61–77. [Google Scholar] [CrossRef]
- Ferrari, S.; Zanotto, V. Office buildings cooling need in the Italian climatic context: Assessing the performances of typical envelopes. Energy Procedia 2012, 30, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- European Union Parliament and Council. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE); Official Journal of the European Union: Luxembourg, 2007. [Google Scholar]
- Agenzia delle Entrate, Osservatorio Del Mercato Immobiliare. Statistiche Catastali 2012—Catasto Edilizio Urbano; Italy, 2013. Available online: https://wwwt.agenziaentrate.gov.it/mt/osservatorio/Tabelle%20statistiche/archivio/StatisticheCatastali2012_29102013.pdf (accessed on 22 July 2021). (In Italian)
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 16 April 2019).
- Python 2.7. Available online: https://www.python.org/download/releases/2.7 (accessed on 29 January 2021).
- European Commission Joint Research Centre, INSPIRE Thematic Working Group Buildings. D2.8.III.2 INSPIRE Data Specification on Buildings—Technical Guidelines; European Commission Joint Research Centre: Brussels, Belgium.
- Ministero per la Pubblica Amministrazione e l’Innovazione. Decreto 10 Novembre 2011. Regole Tecniche per la Definizione del Contenuto del Repertorio Nazionale dei Dati Territoriali, Nonché delle Modalità di Prima Costituzione e di Aggiornamento dello Stesso (GU n.48 del 27/02/2012—Suppl. Ordinario n.37); Gazzetta Ufficiale della Repubblica Italiana: Italy, 2012. Available online: https://www.gazzettaufficiale.it/eli/id/2012/02/27/12A01801/sg (accessed on 22 July 2021). (In Italian)
- Intesa Stato Regioni Enti Locali Sistemi Informativi Territoriali. Specifiche per la Realizzazione dei Database Topografici di Interesse Generale—Il Catalogo Degli Oggetti—Revisione delle Specifiche di Contenuto 1n 1007_1 e 1n 1007_2; Italy, 2006. Available online: https://geodati.gov.it/geoportale/images/Specifica_GdL2_09-05-2016.pdf (accessed on 22 July 2021). (In Italian)
- Istat. 15° Censimento Generale della Popolazione e delle Abitazioni 2011; Manuale della Rilevazione: Roma, Italy, 2011. (In Italian) [Google Scholar]
- Istat. Available online: https://www.istat.it/it/archivio/104317 (accessed on 16 April 2019).
- Ente Italiano di Normazione (UNI). UNI 10379:1994 Riscaldamento Degli Edifici. Fabbisogno Energetico Convenzionalmente Normalizzato. Metodo di Calcolo e Verifica; UNI: Milano, Italy, 1994; Available online: http://store.uni.com/catalogo/uni-10379-1994 (accessed on 22 July 2021). (In Italian)
- Regional Topographic Database. Available online: http://www.geoportale.regione.lombardia.it/en/home (accessed on 16 April 2019).
- CENED. Available online: http://www.cened.it/ (accessed on 6 May 2020).
- Centro Ricerche Economiche Sociologiche e di Mercato nell’Edilizia (CRESME) Ricerche S.p.A. Osservatorio Sull’offerta di Immobili ad Uso Ufficio a Milano; CRESME: Roma, Italy, 2016; Available online: http://www.aspesi-associazione.it/public/files/uffici_milano_report.pdf (accessed on 22 July 2021). (In Italian)
- Ferrari, S.; Zagarella, F.; Caputo, P. Geo-Referenced Procedure to Estimate the Urban Energy Demand Profiles Towards Smart Energy District Scenarios. In Digital Transformation of the Design, Construction and Management Processes of the Built Environment; Springer: Cham, Switzerland, 2020; pp. 367–377. [Google Scholar] [CrossRef] [Green Version]
Reference | Data on Buildings 1 | ||
---|---|---|---|
Shape | Age | Use Category | |
Alhamwi et al. [6] | OSM | - | OSM |
Belussi et al. [7] | Cart + GIS | BCen | Masterplan |
Buffat et al. [8] | BCen + CadB + OSM +Cart | CadB | CadB |
Caputo et al. [9] | Cart | BCen | BCen |
Caputo, Pasetti [24] | GIS | BCen | GIS |
de Oliveira et al. [10] | GIS | GIS | GIS |
Fonseca, Schlueter [27] | OSM | OSM | OSM |
Groppi et al. [11] | GIS | GIS | GIS |
Heiple, Sailor [12] | GIS | GIS | GIS |
Howard et al. [13] | GIS | - | GIS |
Ma, Cheng [14] | GIS + CadB | BCen + CadB | BCen + CadB |
Mastrucci et al. [25] | GIS | GIS | GIS |
Monteiro et al. [15] | GIS | BCen + EPCR | GIS |
Mutani et al. [16] | GIS | GIS + BCen | GIS + BCen |
Nageler et al. [17] | GIS + OSM | energy utility | energy utility |
Pampuri et al. [23] | GIS | CadB | CadB |
Quintana et al. [18] | GIS | online phonebook | - |
Ratti et al. [19] | DEM | - | - |
Saretta et al. [22] | GIS | CadB | CadB |
Sarralde et al. [26] | GIS | - | GIS |
Torabi Moghadam et al. [20] | GIS | BCen | GIS |
Yeo et al. [21] | GIS + CadB | - | GIS + CadB |
Dataset | Attributes | |
---|---|---|
Name | Description | |
Volumetric Units | UUID | ID code |
0201 01 02 UN-VOL-AV | height (m) | |
0201 01 03 UN-VOL-PORZ | portion type | |
Buildings | CR_EDF_UUID | ID code |
0201 02 04 CR_EDF_ST | maintenance status |
Dataset | Attributes | |
---|---|---|
Name | Description | |
Spatial Bases | PRO_COM | City ID code |
NSEZ | Census Unit ID code | |
ACE | Census Area ID code | |
Statistical Variables | A2 | N° of flats with ≥1 residing |
A6 | N° of empty flats | |
A7 | N° of flats without residing | |
A44 | Net floor surface of [A2] | |
E1 | N° of buildings | |
E2 | N° of used buildings | |
E3 | N° of residential buildings | |
E4 | N° of nonresidential (groups of) buildings | |
Statistical Variables (to be required) | - | N° of building units per period of construction (<1919, 1919–45, 1946–60, 1961–70, 1971–80, 1981–90, 1991–2000, 2001–05, and >2005) |
- | N° of office (complexes of) buildings |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, S.; Zagarella, F.; Caputo, P.; Dall’O’, G. Mapping Buildings’ Energy-Related Features at Urban Level toward Energy Planning. Buildings 2021, 11, 322. https://doi.org/10.3390/buildings11080322
Ferrari S, Zagarella F, Caputo P, Dall’O’ G. Mapping Buildings’ Energy-Related Features at Urban Level toward Energy Planning. Buildings. 2021; 11(8):322. https://doi.org/10.3390/buildings11080322
Chicago/Turabian StyleFerrari, Simone, Federica Zagarella, Paola Caputo, and Giuliano Dall’O’. 2021. "Mapping Buildings’ Energy-Related Features at Urban Level toward Energy Planning" Buildings 11, no. 8: 322. https://doi.org/10.3390/buildings11080322
APA StyleFerrari, S., Zagarella, F., Caputo, P., & Dall’O’, G. (2021). Mapping Buildings’ Energy-Related Features at Urban Level toward Energy Planning. Buildings, 11(8), 322. https://doi.org/10.3390/buildings11080322