Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance
Abstract
:1. Introduction
1.1. Properties of Wood and Engineered Wood Products
1.2. Wood Waste in Building Construction Sector
1.3. Wood-Waste Panels
2. Materials and Methods
2.1. Raw Materials
2.2. Fabrication of Eco-Sustainable Panels
- -
- With vinyl glue (acronym Vin), 50% wood, 25% vinyl glue, and 25% water;
- -
- With flour glue (acronym Flo), 40% wood and 60% flour glue and water.
- Sample with vinyl glue: pressure equal to 2 MPa for 25 min, then increased to 12 MPa for 55 min, and a temperature of 130 °C (total time 80 min);
- Sample with flour glue: pressure equal to 2 MPa for 30 min, then increased to 12 Mpa for 70 min, and a temperature of 100 °C (total time 100 min). The lower temperature was set due to a faster mass loss of the flour glue when compared to the vinyl one.
2.3. Thermal and Acoustic Characterization
2.4. LCA Analysis: Methodology and Input Data
3. Results and Discussion
3.1. Thermal Performance
3.2. Acoustic Performance
3.3. Life Cycle Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winandy, J.E. Wood Properties. In Encyclopedia of Agricultural Science; Arntzen, C.J., Ed.; Academic Press: Orlando, FL, USA, 1994; Volume 4, pp. 549–561. [Google Scholar]
- Cunha Buzo, L.A.L.S.; Mello Silva, S.A.; Borges De Moura Aquino, V.; Chahud, E.; Melgaço Nunes Branco, L.A.; De Almeida, D.H.; Christoforo, A.L.; Boff Almeida, J.P.; Rocco Lahr, F.A. Addition of sugarcane bagasse for the production of particleboards bonded with urea-formaldehyde and polyurethane resins. Wood Res. 2020, 65, 727–736. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Lascaro, E.; Merli, F.; Ricciardi, P. Rice husk panels for building applications: Thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials. Constr. Build. Mater. 2018, 171, 338–349. [Google Scholar] [CrossRef]
- Lu, N.H.R.; El Hanandeh, A.; Gilbert, B.P. A comparative life cycle study of alternative materials for Australian multi-storey apartment building frame constructions: Environmental and economic perspective. J. Clean. Prod. 2017, 166, 458–473. [Google Scholar] [CrossRef]
- Ali Tighnavard Balasbaneh, O.; Yeoh, D.; Zainal Abidin, A.R. Life cycle sustainability assessment of window renovations in schools against noise pollution in tropical climates. J. Build. Eng. 2020, 32, 101784. [Google Scholar] [CrossRef]
- Sandanayake, P.M.; Lokuge, W.; Zhang, G.; Setunge, S.; Thushar, Q. Greenhouse gas emissions during timber and concrete building construction—A scenario based comparative case study. Sustain. Cities Soc. 2018, 38, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Tighnavard Balasbaneh, Q.A.; Sher, W. Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT. Build. Environ. 2021, 204, 108112. [Google Scholar] [CrossRef]
- Ferrandez Villena, M.; Ferrandez Garcia, C.E.; Garcia–Ortuno, T.; Frrandez Garcia, A.; Ferrandez Garcia, M.T. Analysis of the thermal insulation and fire-resistance capacity of particleboards made from Vine (Vitis vinifera L.) Prunings. Polymers 2020, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.J.; Hagemann, N.; Thrän, D. The contribution of wood-based construction materials for leveraging a lowcarbon building sector in Europe. Sustain. Cities Soc. 2017, 34, 405–418. [Google Scholar] [CrossRef]
- Hyung, K.M.; Byul, S.H. Analysis of the global warming potential for wood waste recycling systems. J. Clean Prod. 2014, 69, 199–207. [Google Scholar]
- Ratajczak, E.; Bidzińska, G.; Szostak, A.; Herbeć, M. Resources of post-consumer wood waste originating from the construction sector in Poland. Resour. Conser. Recycl. 2015, 97, 93–99. [Google Scholar] [CrossRef]
- Cespirini, E.; Resente, G.; Causin, V.; Urso, T.; Cavalli, R.; Zanetti, M. Energy recovery of glued wood waste—A review. Fuel 2020, 262, 116520. [Google Scholar] [CrossRef]
- Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Ind. Crop. Prod. 2019, 135, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, P.; Torchia, F.; Belloni, E.; Lascaro, E.; Buratti, C. Environmental characterisation of coffee chaff, a new recycled material for building applications. Constr. Build. Mater. 2017, 147, 185–193. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S. Comparative LCA of wood waste management strategies generated from building construction activities. J. Clean Prod. 2018, 177, 387–397. [Google Scholar] [CrossRef]
- Martins, R.S.F.; Goncalves, F.G.; Segundinho, P.G.D.A.; Lelis, R.C.C.; Paes, J.B.; Lopez, Y.M.; Chaves, I.L.S.; Oliveira, R.G.E.D. Investigation of agro-industrial lignocellulosic wastes in fabrication of particleboard for construction use. J. Build. Eng. 2021, 43, 102903. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Dong, H.; Fu, S.; Ma, L.; Yang, X. Wood plastic composites based wood wall’s structure and thermal insulation performance. J. Biores. Bioprod. 2021, 6, 65–74. [Google Scholar]
- Pásztory, Z.; Mohácsiné, I.R.; Börcsök, Z. Investigation of thermal insulation panels made of black locust tree bark. Constr. Build. Mater. 2017, 147, 733–735. [Google Scholar] [CrossRef]
- Romano, A.; Bras, A.; Grammatikos, S.; Shaw, A.; Riley, M. Dynamic behavior of bio-based and recycled materials for indoor environmental comfort. Constr. Build. Mater. 2019, 211, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Pavelek, M.; Adamová, T. Bio-waste thermal insulation panel for sustainable building construction in steady and unsteady-state conditions. Materials 2019, 12, 2004. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Demartino, C.; Xiao, Y.; Li, Y.Y. Thermal insulation performance of bamboo- and wood-based shear walls in light-frame buildings. Energ. Build. 2018, 168, 167–179. [Google Scholar] [CrossRef]
- Baldinelli, G.; Bianchi, F.; Gendelis, S.; Jacovics, A.; Morini, G.L.; Falcioni, S.; Fantucci, S.; Serra, V.; Navacerrada, M.A.; Díaz, C.; et al. Thermal conductivity measurement of insulating innovative building materials by hot plate and heat flow meter devices: A Round Robin Test. Int. J. Therm. Sci. 2019, 139, 25–35. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Qi, X.; Chen, N.; Zeng, Q.; Dai, D.; Fan, M.; Rao, J. Thermal insulation properties of green vacuum insulation panel using wood fiber as core material. BioResources 2019, 14, 3339–3351. [Google Scholar] [CrossRef]
- Cherradi, Y.; Calin Rosca, I.; Cerbu, C.; Kebir, H.; Guendouz, A.; Benyoucef, M. Acoustic properties for composite materials based on alfa and wood fibers. Appl. Acoust. 2021, 174, 107759. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišt’ák, L. Sound absorption coefficient of bark-based insulation panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef]
- Casas-Ledon, Y.; Daza Salgado, K.; Cea, J.; Arteaga Perez, L.E.; Fuentealba, C. Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers. J. Clean. Prod. 2020, 249, 119356. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Kuliński, M.; Derkowski, A. Lightweight insulation boards based on lignocellulosic particles glues with agents of natural origin. Materials 2021, 14, 3219. [Google Scholar] [CrossRef]
- FAIL Società Cooperativa. Available online: http://www.failgroup.it (accessed on 1 February 2019).
- Buratti, C.; Costarelli, I.; Cotana, F.; Crisostomi, L.; Fantozzi, F. The Biomass Research Center Laboratory for Biomass Characterization. In Proceedings of the 14th European Biomass Conference and Exhibition, Biomass for Energy, Industry and Climate Protection, Paris, France, 17–21 October 2005; ETA Folrence: Florence, Italy, 2005; pp. 1855–1858. [Google Scholar]
- UNI EN ISO 18134-1:2015. Solid Biofuels—Determination of Moisture Content—Oven Dry Method-Part 1: Total Moisture—Reference Method; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- UNI EN ISO 18122:2016. Solid Biofuels—Determination of Ash Content; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- UNI EN ISO 18123:2016. Solid Biofuels—Determination of The Content of Volatile Matter; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- UNI EN ISO 16948:2015. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- UNI EN ISO 18125:2018. Solid Biofuels-Determination of calorific Value; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Properties of Different Wood Types. Available online: https://www.chimica-online.it/materiali/legno.htm (accessed on 1 September 2020).
- Merli, F.; Belloni, E.; Buratti, C. Production of eco-sustainable insulating panels by recovering wood waste: Fabrication and preliminary experimental characterization of thermal and acoustic properties. In Proceedings of the 75th National ATI Congress-#7 Clean Energy for all, ATI 2020, Rome, Italy, 15–16 September 2020; Volume 197, p. 08021. [Google Scholar]
- Buratti, C.; Belloni, E.; Lunghi, L.; Barbanera, M. Thermal Conductivity Measurements by Means of a New ‘Small Hot-Box’ Apparatus: Manufacturing, Calibration and Preliminary Experimental Tests on Different Materials. Int. J. 2016, 37–47. [Google Scholar] [CrossRef]
- UNI CEI ENV 13005:2000. Guide to the Expression of Uncertainty in Measurement; UNI: Rome, Italy, 2000. [Google Scholar]
- ISO 10456:2007. Building Materials and Products—Hygrothermal Propertie—Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- ISO 10534-2:2015. Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- SimaPro Software. Available online: https://simapro.com/databases/ (accessed on 1 May 2021).
- ISO14040:2006. Environmental Management-Life Cycle Assessment-Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Huberman, N.; Pearlmutter, D. A life-cycle energy analysis of building materials in the Negev desert. Energy Build. 2008, 40, 837–848. [Google Scholar] [CrossRef]
- Pásztory, Z.; Ronyecz, I. The Thermal Insulation Capacity of Tree Bark. Acta Silv. Lign. Hung. 2013, 9, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Natural Insulators. Available online: https://www.celenit.com/it/celenit-n.php (accessed on 1 February 2021).
- Straw houses. Available online: http://www.caseinpaglia.it/index.php?option=com_content&view=article&id=52&Itemid=63 (accessed on 1 February 2021).
- Available online: https://unikore.it/phocadownload/userupload/f2201fa35c/Conduttivita_termica_peso_specifico.pdf (accessed on 1 February 2021).
- Ricciardi, P.; Belloni, E.; Cotana, F. Innovative Panels with Recycled Materials: Thermal and Acoustic Performance and Life Cycle Assestment. Appl. Energy 2014, 134, 150–162. [Google Scholar] [CrossRef]
- ASTM C423-09A:2009. Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 92, 840–852. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
Fabrication | Wood | Adhesive | Acronym | Thickness [m] | Picture |
---|---|---|---|---|---|
thermal characterization (300 × 300 mm2) | |||||
hand-assembly | pine | vinyl | P_Vin | 0.040 | |
flour | P_Flo | 0.035 | |||
oak | vinyl | O_Vin | 0.034 | ||
flour | O_Flo | 0.036 | |||
mahogany | vinyl | M_Vin | 0.040 | ||
flour | M_Flo | 0.045 | |||
pine + olive | vinyl | P+OL_Vin | 0.038 | ||
flour | P+OL_Flo | 0.042 | |||
hot press | pine | vinyl | P_Vin-pres | 0.045 | |
flour | P_Flo-pres | ||||
acoustic characterization (100-mm diameter) | |||||
hand-assembly | pine | vinyl | P_Vin_25 | 0.025 | |
P_Vin_50 | 0.050 | ||||
flour | P_Flo_25 | 0.025 | |||
P_Flo_50 | 0.050 | ||||
oak | vinyl | O_Vin_25 | 0.025 | ||
O_Vin_50 | 0.050 | ||||
flour | O_Flo_25 | 0.025 | |||
O_Flo_50 | 0.050 | ||||
mahogany | vinyl | M_Vin_25 | 0.025 | ||
M_Vin_50 | 0.050 | ||||
flour | M_Flo_25 | 0.025 | |||
M_Flo_50 | 0.050 | ||||
pine + olive | vinyl | P+OL_Vin_25 | 0.025 | ||
P+OL_Vin_50 | 0.050 | ||||
flour | P+OL_Flo_25 | 0.025 | |||
P+OL_Flo_50 | 0.050 | ||||
hot press | pine | vinyl | P_Vin-pres_45 | 0.045 | |
flour | P_Flo-pres_45 |
Sample | Density [kg/m3] | Test [°C] | ∆Ts [°C] | ∆Tair [°C] | φmed [W/m2] | λ [W/mK] | [%] | Standard Deviation [W/mK] |
---|---|---|---|---|---|---|---|---|
hand-assembly | ||||||||
P_Vin (t = 40 mm) | 282 | 45 | 19.87 | 23.19 | 35.71 | 0.085 | 13 | ±0.000 |
282 | 50 | 20.55 | 28.48 | 43.87 | 0.085 | 14 | ||
P_Flo (t = 35 mm) | 325 | 45 | 15.80 | 23.43 | 38.60 | 0.086 | 4 | ±0.001 |
325 | 50 | 18.89 | 27.57 | 47.04 | 0.087 | 4 | ||
O_Vin (t = 34 mm) | 345 | 45 | 18.66 | 25.29 | 48.98 | 0.089 | 18 | ±0.003 |
345 | 50 | 22.38 | 30.02 | 61.09 | 0.093 | 19 | ||
O_Flo (t = 36 mm) | 333 | 45 | 12.93 | 23.57 | 32.95 | 0.092 | 21 | ±0.002 |
333 | 50 | 15.52 | 24.38 | 41.10 | 0.095 | 23 | ||
M_Vin (t = 40 mm) | 282 | 45 | 18.94 | 24.64 | 30.06 | 0.080 | 10 | ±0.006 |
282 | 50 | 18.43 | 25.16 | 40.34 | 0.088 | 12 | ||
M_Flo (t = 45 mm) | 345 | 45 | 12.83 | 23.03 | 23.41 | 0.082 | 8 | ±0.000 |
345 | 50 | 16.92 | 22.73 | 30.87 | 0.082 | 9 | ||
P+OL_Vin (t = 38 mm) | 293 | 45 | 18.14 | 24.72 | 39.62 | 0.083 | 9 | ±0.001 |
293 | 50 | 19.25 | 25.12 | 42.55 | 0.084 | 7 | ||
P+OL_Flo (t = 42 mm) | 340 | 45 | 20.03 | 23.15 | 40.54 | 0.085 | 8 | ±0.000 |
340 | 50 | 19.85 | 25.08 | 40.17 | 0.085 | 7 | ||
hot press assembly | ||||||||
P_Vin-pres (t = 45 mm) | 398 | 45 | 17.39 | 24.20 | 32.52 | 0.084 | 4 | ±0.001 |
398 | 50 | 20.68 | 28.3 | 39.43 | 0.086 | 6 | ||
P_Flo-pres (t = 45 mm) | 405 | 45 | 16.21 | 23.9 | 30.62 | 0.085 | 3 | ±0.001 |
405 | 50 | 20.12 | 27.8 | 38.90 | 0.087 | 5 |
Materials | GWP (kg CO2eq Per m2) |
---|---|
Cellulose-based panel | 0.73 |
Cork-based panel | 5.72 |
Expanded Polystyrene | 8.25 |
Panel with glass fibers | 7.70 |
Panel with wool fibers | 9.89 |
Hempy-based panel | 0.17–0.26 |
Kenaf-based panel | 1.13 |
Sheep wool | 1.46 |
Rock wool | 2.77 |
Wood wool | 1.56 |
Rice Husk | 1.10 |
Granulated rubber panel | 3.60 |
Coffee chaff | 0.58 |
Panel with glued waste paper | 8.0–3.1 |
Wood-based panel with vinyle glue (P_Vin-pres) | 5.41 |
Wood-based panel with flour glue (P_Flo-pres) | 3.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merli, F.; Belloni, E.; Buratti, C. Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance. Buildings 2021, 11, 361. https://doi.org/10.3390/buildings11080361
Merli F, Belloni E, Buratti C. Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance. Buildings. 2021; 11(8):361. https://doi.org/10.3390/buildings11080361
Chicago/Turabian StyleMerli, Francesca, Elisa Belloni, and Cinzia Buratti. 2021. "Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance" Buildings 11, no. 8: 361. https://doi.org/10.3390/buildings11080361
APA StyleMerli, F., Belloni, E., & Buratti, C. (2021). Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance. Buildings, 11(8), 361. https://doi.org/10.3390/buildings11080361