Smart Home Adoption: The Impact of User Characteristics and Differences in Perception of Benefits
Abstract
:1. Introduction
2. Literature Review
2.1. Benefits of Smart Home
2.2. Factors Influencing Smart Home Adoption
3. Research Method
3.1. Research Model and Hypotheses
3.2. Questionnaire Items
3.3. Data Collection
4. Result
4.1. Demographic Characteristics of Respondents
4.2. Service Preference
4.3. Factors Influencing Intention to Use
4.4. Regression Analysis
4.5. Discussion
5. Conclusions and Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–105. [Google Scholar] [CrossRef]
- Lutolf, R. Smart home concept and the integration of energy meters into a home based system. In Proceedings of the Seventh International Conference on Metering Apparatus and Tariffs for Electricity Supply 1992, Glasgow, UK, 17–19 November 1992. [Google Scholar]
- Friedewald, M.; Da Costa, O.; Punie, Y.; Alahuhta, P.; Heinonen, S. Perspectives of ambient intelligence in the home environment. Telemat. Inform. 2005, 22, 221–238. [Google Scholar] [CrossRef]
- Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A review of smart homes—Past, present, and future. IEEE Trans. Syst. Man Cybern. Part C 2012, 42, 1190–1203. [Google Scholar] [CrossRef]
- Yamazaki, T. Beyond the smart home. In Proceedings of the 2006 International Conference on Hybrid Information Technology, Cheju, Korea, 9–11 November 2006. [Google Scholar] [CrossRef]
- Chang, S.; Nam, K. Spatial Design Direction of Smart Home in IoT Paradigm. In Proceedings of the 2019 2nd World Symposium on Communication Engineering (WSCE), Nagoya, Japan, 20–23 December 2019. [Google Scholar] [CrossRef]
- Coskun, A.; Kaner, G.; Bostan, İ. Is smart home a necessity or a fantasy for the mainstream user? A study on users’ expectations of smart household appliances. Int. J. Des. 2018, 12, 7–20. [Google Scholar]
- Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Benefits and risks of smart home technologies. Energy Policy 2017, 103, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Dimitrokali, E.; Mackrill, J.; Jennings, P.; Khanna, S.; Harris, V.; Cain, R. Exploring homeowners’ perception and experiences in using a domestic smart home heating controller. Indoor Built Environ. 2015, 24, 1010–1032. [Google Scholar] [CrossRef]
- Koupaei, D.M.; Song, T.; Cetin, K.S.; Im, J. An assessment of opinions and perceptions of smart thermostats using aspect-based sentiment analysis of online reviews. Build. Environ. 2020, 170, 106603. [Google Scholar] [CrossRef]
- Pal, D.; Funilkul, S.; Charoenkitkarn, N.; Kanthamanon, P. Internet-of-things and smart homes for elderly healthcare: An end user perspective. IEEE Access 2018, 6, 10483–10496. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Davidson, R.; Bicket, M.; Whitmarsh, L. Social barriers to the adoption of smart homes. Energy Policy 2013, 63, 363–374. [Google Scholar] [CrossRef]
- Hubert, M.; Blut, M.; Brock, C.; Zhang, R.W.; Koch, V.; Riedl, R. The influence of acceptance and adoption drivers on smart home usage. Eur. J. Mark. 2019, 53, 1073–1098. [Google Scholar] [CrossRef]
- Park, E.; Kim, S.; Kim, Y.; Kwon, S.J. Smart home services as the next mainstream of the ICT industry: Determinants of the adoption of smart home services. Univers. Access Inf. Soc. 2018, 17, 175–190. [Google Scholar] [CrossRef]
- Shuhaiber, A.; Mashal, I. Understanding users’ acceptance of smart homes. Technol. Soc. 2019, 58, 101110. [Google Scholar] [CrossRef]
- Shin, J.; Park, Y.; Lee, D. Who will be smart home users? An analysis of adoption and diffusion of smart homes. Technol. Forecast. Soc. Chang. 2018, 134, 246–253. [Google Scholar] [CrossRef]
- Baudier, P.; Ammi, C.; Deboeuf-Rouchon, M. Smart home: Highly-educated students’ acceptance. Technol. Forecast. Soc. Chang. 2020, 153, 119355. [Google Scholar] [CrossRef]
- Ford, R.; Pritoni, M.; Sanguinetti, A.; Karlin, B. Categories and functionality of smart home technology for energy management. Build. Environ. 2017, 123, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Javaid, N.; Khan, M.I. Time and device based priority induced comfort management in smart home within the consumer budget limitation. Sustain. Cities Soc. 2018, 41, 538–555. [Google Scholar] [CrossRef]
- Paetz, A.G.; Dütschke, E.; Fichtner, W. Smart homes as a means to sustainable energy consumption: A study of consumer perceptions. J. Consum. Policy 2012, 35, 23–41. [Google Scholar] [CrossRef]
- Chan, M.; Campo, E.; Estève, D.; Fourniols, J.Y. Smart homes—current features and future perspectives. Maturitas 2009, 64, 90–97. [Google Scholar] [CrossRef]
- Allameh, E.; Jozam, M.H.; de Vries, B.; Timmermans, H.; Beetz, J.; Mozaffar, F. The role of Smart Home in smart real estate. J. Eur. Real Estate Res. 2012, 5, 156–170. [Google Scholar] [CrossRef]
- Reeder, B.; Chung, J.; Lyden, K.; Winters, J.; Jankowski, C.M. Older women’s perceptions of wearable and smart home activity sensors. Inform. Health Soc. Care 2020, 45, 96–109. [Google Scholar] [CrossRef]
- Thielke, S.; Harniss, M.; Thompson, H.; Patel, S.; Demiris, G.; Johnson, K. Maslow’s hierarchy of human needs and the adoption of health-related technologies for older adults. Ageing Int. 2012, 37, 470–488. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Leung, J.K. Modelling factors influencing the adoption of smart-home technologies. Facilities 2016, 34, 906–923. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Amerighi, O.; Boteler, B. A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: Reflections for policy and future research. Technol. Anal. Strateg. Manag. 2014, 26, 1176–1195. [Google Scholar] [CrossRef]
- Demiris, G.; Hensel, B.K. Technologies for an aging society: A systematic review of “smart home” applications. Yearb. Med. Inform. 2008, 3, 33–40. [Google Scholar]
- Ziefle, M.; Himmel, S.; Wilkowska, W. When your living space knows what you do: Acceptance of medical home monitoring by different technologies. In Proceedings of the Symposium of the Austrian HCI and Usability Engineering Group, Graz, Austria, 25–26 November 2011. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H. The effects of successful ICT-based smart city services: From citizens’ perspectives. Gov. Inf. Q. 2017, 34, 556–565. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Choi, J. A study on the adoption of IoT smart home service: Using Value-based Adoption Model. Total. Qual. Manag. Bus. Excell. 2017, 28, 1149–1165. [Google Scholar] [CrossRef]
- Gaul, S.; Ziefle, M. Smart home technologies: Insights into generation-specific acceptance motives. In Symposium of the Austrian HCI and Usability Engineering Group; Springer: Berlin/Heidelberg, Germany, 2009; pp. 312–332. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Chan, H.C.; Gupta, S. Value-based adoption of mobile internet: An empirical investigation. Decis. Support Syst. 2007, 43, 111–126. [Google Scholar] [CrossRef]
- Brush, A.B.; Lee, B.; Mahajan, R.; Agarwal, S.; Saroiu, S.; Dixon, C. Home automation in the wild: Challenges and opportunities. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; ACM Press: New York, NY, USA, 2011; pp. 2115–2124. [Google Scholar] [CrossRef]
- Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Smart homes and their users: A systematic analysis and key challenges. Pers. Ubiquitous Comput. 2015, 19, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Lin, T.C.; Wu, S.; Hsu, J.S.C.; Chou, Y.C. The integration of value-based adoption and expectation–confirmation models: An example of IPTV continuance intention. Decis. Support Syst. 2012, 54, 63–75. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. The mediating role of perceived interactivity in the effect of actual interactivity on attitude toward the website. J. Interact. Advert. 2005, 5, 29–39. [Google Scholar] [CrossRef]
- Hsu, C.L.; Lin, J.C.C. Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Inf. Manag. 2008, 45, 65–74. [Google Scholar] [CrossRef]
- Van Dijk, J.A.; Peters, O.; Ebbers, W. Explaining the acceptance and use of government Internet services: A multivariate analysis of 2006 survey data in the Netherlands. Gov. Inf. Q. 2008, 25, 379–399. [Google Scholar] [CrossRef]
- Aldossari, M.Q.; Sidorova, A. Consumer acceptance of Internet of Things (IoT): Smart home context. J. Comput. Inf. Syst. 2020, 60, 507–517. [Google Scholar] [CrossRef]
- Parag, Y.; Butbul, G. Flexiwatts and seamless technology: Public perceptions of demand flexibility through smart home technology. Energy Res. Soc. Sci. 2018, 39, 177–191. [Google Scholar] [CrossRef]
- Luor, T.T.; Lu, H.P.; Yu, H.; Lu, Y. Exploring the critical quality attributes and models of smart homes. Maturitas 2015, 82, 377–386. [Google Scholar] [CrossRef]
- Mennicken, S.; Vermeulen, J.; Huang, E.M. From today’s augmented houses to tomorrow’s smart homes: New directions for home automation research. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Washington, DC, USA, 13–17 September 2014; pp. 105–115. [Google Scholar] [CrossRef]
- Noh, M.J.; Kim, J.S. Factors influencing the user acceptance of digital home services. Telecommun. Policy 2010, 34, 672–682. [Google Scholar] [CrossRef]
- Eggen, B.; Hollemans, G.; van de Sluis, R. Exploring and enhancing the home experience. Cogn. Technol. Work. 2003, 5, 44–54. [Google Scholar] [CrossRef]
- Courtney, K.L.; Demeris, G.; Rantz, M.; Skubic, M. Needing smart home technologies: The perspectives of older adults in continuing care retirement communities. Inform. Prim. Care 2008, 16, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demiris, G.; Rantz, M.J.; Aud, M.A.; Marek, K.D.; Tyrer, H.W.; Skubic, M.; Hussam, A.A. Older adults’ attitudes towards and perceptions of ‘smart home’technologies: A pilot study. Med. Inform. Internet Med. 2004, 29, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Funilkul, S.; Vanijja, V.; Papasratorn, B. Analyzing the elderly users’ adoption of smart-home services. IEEE Access 2018, 6, 51238–51252. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.; Zo, H. User acceptance of smart home services: An extension of the theory of planned behavior. Ind. Manag. Data Syst. 2017, 117, 68–89. [Google Scholar] [CrossRef]
- Nikou, S. Factors driving the adoption of smart home technology: An empirical assessment. Telemat. Inform. 2019, 45, 101283. [Google Scholar] [CrossRef]
- Williams, T.; Bernold, L.; Lu, H. Adoption patterns of advanced information technologies in the construction industries of the United States and Korea. J. Constr. Eng. Manag. 2007, 133, 780–790. [Google Scholar] [CrossRef]
- Yang, H.; Lee, W.; Lee, H. IoT smart home adoption: The importance of proper level automation. J. Sens. 2018. [Google Scholar] [CrossRef] [Green Version]
- Mamat, M.; Haron, M.S.; Razak, N.S.A. Personal interaction encounter, customer involvement, familiarity and customer service experience in Malaysian public universities. Procedia Soc. Behav. Sci. 2014, 130, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.F.; Venkatesh, A. Beyond adoption: Development and application of a use-diffusion model. J. Mark. 2004, 68, 59–72. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport. Standards for Intelligent Home Network Installation and Technology. Available online: http://www.molit.go.kr/USR/I0204/m_45/dtl.jsp?idx=16461 (accessed on 21 August 2020).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics Korea. Income Statistics of Wage Workers in 2018. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board?bmode=read&bSeq=&aSeq=380950&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=srch&sTarget=title&sTxt=2018 (accessed on 25 August 2020).
- Statistics Korea. 2018 Population and Housing Census. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board?bmode=read&bSeq=&aSeq=378503&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=srch&sTarget=title&sTxt=2018+Population+and+Housing (accessed on 25 August 2020).
- Hair, J.F.; Bush, R.P.; Ortinau, D.J. Marketing Research: A Practical Approach for the New Millennium; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS: (and Sex and Drugs and Rock’N’Roll), 3rd ed; SAGE: London, UK, 2009. [Google Scholar]
- Tetteh, N.; Amponsah, O. Sustainable Adoption of Smart Homes from the Sub-Saharan African Perspective. Sustain. Cities Soc. 2020, 63, 102434. [Google Scholar] [CrossRef]
- Soyinka, O.; Siu, K.W.M.; Lawanson, T.; Adeniji, O. Assessing smart infrastructure for sustainable urban development in the Lagos metropolis. J. Urban Manag. 2016, 5, 52–64. [Google Scholar] [CrossRef]
Category | Option | Description |
---|---|---|
Convenience | Environmental control | A service that provides integrated management of house components, such as heating, ventilation, and lighting systems. |
Remote monitoring | A service that offers remote residential environment management connected anytime, anywhere, such as a remote door or window opener, home camera, voice-control devices for the home. | |
Safety | Visitor monitoring | A service that identities potential intruders or sends warning notifications to residents about the open state of doors and windows. |
Leak detection | A service that detects gas, electricity, or water leaks and automatically shuts down the system to prevent accidents. | |
Energy | Energy-saving and management | A service that reduces energy demand either directly or indirectly by monitoring energy consumption and promoting users’ participation in eco-friendly energy utilization. |
Healthcare | Air quality monitoring | A service that detects and manages air pollution information and air quality affecting users’ health. |
Emergency call | A service that automatically sends an alarm to designated families or facilities if there is unusual activity for users, such as falls. |
Variable | N | % | Cross-Tabulation Analysis (p) | ||||||
---|---|---|---|---|---|---|---|---|---|
Age | Income Level | Education Level | Residential Type | Experience of Use | |||||
Gender | Male | 184 | 46.0 | <0.05 * | <0.001 *** | ||||
Female | 216 | 54.0 | |||||||
Age | Under 20 | 0 | 0 | <0.001 ** | <0.05 * | . | |||
21–30 | 91 | 22.8 | |||||||
31–40 | 150 | 37.5 | |||||||
41–50 | 89 | 22.3 | |||||||
51 or above | 70 | 17.5 | |||||||
Income level | Less than 2 million won | 85 | 21.3 | <0.001 *** | <0.01 ** | <0.05 * | |||
2 million won–4 million won | 179 | 44.8 | |||||||
4 million won or more | 136 | 34 | |||||||
Education level | Up to high school | 75 | 18.8 | <0.01 ** | <0.05 * | ||||
Bachelor’s degree/graduate degree | 325 | 81.3 | |||||||
Residential type | Apartment | 277 | 69.3 | ||||||
Non-apartment | Single-family home | 50 | 12.5 | ||||||
Studio-apartment | 21 | 5.3 | |||||||
Mixed-use apartment | 15 | 3.8 | |||||||
Other types | 37 | 9.3 | |||||||
Experience of use | Never experienced | 380 | 95.0 | ||||||
Have experience | 20 | 5.0 |
Variable | Convenience | Safety | Energy | Healthcare | Total | χ2 | p | |
---|---|---|---|---|---|---|---|---|
Gender | Male | 71 (38.6) | 86 (46.7) | 17 (9.2) | 10 (5.4) | 184 (100.0) | 9.777 | <0.05 * |
Female | 56 (25.9) | 134 (62.0) | 16 (7.4) | 10 (4.6) | 216 (100.0) | |||
Age | 21–30 | 29 (31.9) | 50 (54.9) | 8 (8.8) | 4 (2.7) | 91 (100.0) | 10.953 | |
31–40 | 56 (37.3) | 80 (53.3) | 10 (6.7) | 4 (2.7) | 150 (100.0) | |||
41–50 | 22 (24.7) | 48 (53.9) | 11 (12.4) | 8 (9.0) | 89 (100.0) | |||
51 or above | 20 (28.6) | 42 (60.0) | 4 (5.7) | 4 (5.7) | 70 (100.0) | |||
Income level | Less than 2 million won | 24 (28.2) | 53 (62.4) | 5 (5.9) | 3 (3.5) | 85 (100.0) | 5.387 | |
2 million won–4 million won | 56 (31.3) | 100 (55.9) | 16 (8.9) | 7 (3.9) | 179 (100.0) | |||
4 million won or more | 47 (34.6) | 67 (49.3) | 12 (8.8) | 10 (7.4) | 136 (100.0) | |||
Education level | Up to high school | 20 (26.7) | 43 (57.3) | 8 (10.7) | 4 (5.3) | 75 (100.0) | 1.517 | |
Bachelor’s degree/graduate degree | 107 (32.9) | 177 (54.5) | 25 (7.7) | 16 (4.9) | 325 (100.0) | |||
Residential type | Apartment | 100 (36.1) | 138 (49.8) | 22 (7.9) | 17 (6.1) | 277 (100.0) | 12.200 | <0.01 ** |
Non-apartment | 27 (22.0) | 82 (66.7) | 11 (8.9) | 3 (2.4) | 123 (100.0) | |||
Experience of use | Never experienced | 114 (30.0) | 217 (57.1) | 30 (7.9) | 19 (5.0) | 380 (100.0) | 15.385 | <0.01 ** |
Have experience | 13 (65.0) | 3 (15.0) | 3 (15.0) | 1 (5.0) | 20 (100.0) |
Variable | Item | N | Min | Max | Mean | SD |
---|---|---|---|---|---|---|
IU 1 | Using smart home services will be worthwhile. | 400 | 1 | 5 | 3.92 | 0.878 |
IU 2 | I would like to use smart home services as much as I can from now on. | 400 | 1 | 5 | 3.95 | 0.997 |
IU 3 | I will continue using smart home services or expect to use smart home services in the future. | 400 | 1 | 5 | 3.92 | 0.904 |
IU 4 | I will recommend smart home services to others. | 400 | 1 | 5 | 3.61 | 0.935 |
Intention to use (Mean) | 400 | 1.25 | 5.00 | 3.8506 | 0.78162 |
Variable | Intention to use | |||||||
---|---|---|---|---|---|---|---|---|
n | Mean | SD | t | p | F | Post-Hoc Test(p) | ||
Gender | Male | 184 | 3.9171 | 0.81457 | 1.573 | |||
Female | 216 | 3.7940 | 0.74967 | |||||
Age | 21–30 | 91 | 3.7720 | 0.81959 | 1.970 | |||
31–40 | 150 | 3.9133 | 0.76467 | |||||
41–50 | 89 | 3.7275 | 0.81328 | |||||
51 or above | 70 | 3.9750 | 0.70602 | |||||
Income level | Less than 2 million won (a) | 85 | 3.4588 | 0.92086 | <0.001 *** | 18.653 | a < b (<0.01 **) a < c (<0.001 ***) b < c (<0.01 **) | |
2 million won–4 million won (b) | 179 | 3.8324 | 0.73428 | |||||
4 million won or more (c) | 136 | 4.1195 | 0.63023 | |||||
Education level | Up to high school | 75 | 3.6267 | 0.96157 | −2.334 | <0.05 * | ||
Bachelor’s degree/graduate degree | 325 | 3.9023 | 0.72587 | |||||
Residential type | Apartment | 277 | 3.9224 | 0.76009 | 2.779 | <0.01 ** | ||
Non-apartment | 123 | 3.6890 | 0.80809 | |||||
Experience of use | Never experienced | 380 | 3.8184 | 0.77875 | −4.872 | <0.001 *** | ||
Have experience | 20 | 4.4625 | 0.56356 | |||||
Service preference 1 | Convenience (a) | 127 | 4.1083 | 0.69550 | <0.001 *** | 8.322 | a > b (<0.001 ***) a > d (<0.01 **) | |
Safety (b) | 220 | 3.7375 | 0.77313 | |||||
Energy (c) | 33 | 3.8561 | 0.77316 | |||||
Healthcare (d) | 20 | 3.4500 | 0.98208 | |||||
Service preference (detailed) 2 | Environmental control (a) | 74 | 4.1318 | 0.62923 | <0.001 *** | 5.182 | a > d (<0.05 *) a > g (<0.05 *) | |
Remote monitoring (b) | 53 | 4.0755 | 0.78383 | |||||
Visitor monitoring (c) | 108 | 3.8032 | 0.78913 | |||||
Leak detection (d) | 112 | 3.6741 | 0.75549 | |||||
Energy saving & management (e) | 33 | 3.8561 | 0.77316 | |||||
Air quality monitoring (f) | 15 | 3.6500 | 0.98107 | |||||
Emergency call (g) | 5 | 2.8500 | 0.78262 |
Variable | Model 1 | Model 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | β | t | p | VIF | B | β | t | p | VIF | ||
(constant) | 3.894 | 31.684 | <0.001 *** | 4.153 | 29.355 | <0.001 *** | |||||
Gender (Male) | 0.058 | 0.037 | 0.758 | 1.052 | 0.020 | 0.013 | 0.265 | 1.078 | |||
Age (21–30) | −0.048 | −0.026 | −0.396 | 1.890 | −0.076 | −0.041 | −0.632 | 1.902 | |||
Age (31–40) | −0.039 | −0.024 | −0.353 | 2.034 | −0.076 | −0.047 | −0.702 | 2.049 | |||
Age (41–50) | −0.233 | −0.124 | −1.954 | 1.788 | −0.219 | −0.116 | −1.858 | 1.805 | |||
Income level (Less than 2 million won) | −0.423 | −0.222 | −4.342 | <0.001 *** | 1.154 | −0.427 | −0.224 | −4.459 | <0.001 *** | 1.156 | |
Education level (Up to high school) | −0.131 | −0.066 | −1.325 | 1.082 | −0.124 | −0.062 | −1.271 | 1.086 | |||
Residential types (Apartment) | 0.142 | 0.084 | 1.721 | 1.053 | 0.118 | −0.070 | 1.436 | 1.082 | |||
Experience of use (Have experience) | 0.475 | 0.133 | 2.727 | <0.01 ** | 1.044 | 0.387 | 0.108 | 2.232 | <0.05 * | 1.077 | |
Service preference | Safety | −0.283 | -0.181 | −3.345 | <0.01 ** | 1.339 | |||||
Energy | −0.213 | −0.075 | −1.478 | 1.180 | |||||||
Healthcare | −0.626 | −0.175 | −3.535 | <0.001 *** | 1.124 | ||||||
R² | 0.116 | 0.155 | |||||||||
adj.R² | 0.097 | 0.131 | |||||||||
ΔR² | 0.116 | 0.040 | |||||||||
ΔF(p) | 6.387 (<0.001) | 6.097 (<0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Nam, K. Smart Home Adoption: The Impact of User Characteristics and Differences in Perception of Benefits. Buildings 2021, 11, 393. https://doi.org/10.3390/buildings11090393
Chang S, Nam K. Smart Home Adoption: The Impact of User Characteristics and Differences in Perception of Benefits. Buildings. 2021; 11(9):393. https://doi.org/10.3390/buildings11090393
Chicago/Turabian StyleChang, Soojung, and Kyeongsook Nam. 2021. "Smart Home Adoption: The Impact of User Characteristics and Differences in Perception of Benefits" Buildings 11, no. 9: 393. https://doi.org/10.3390/buildings11090393
APA StyleChang, S., & Nam, K. (2021). Smart Home Adoption: The Impact of User Characteristics and Differences in Perception of Benefits. Buildings, 11(9), 393. https://doi.org/10.3390/buildings11090393