Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope
Abstract
:1. Introduction
2. Background
2.1. Energy Efficiency and Historic Buildings
2.2. Hygrothermal Assessment of ITICS Interventions
3. Materials and Methods
3.1. Numerical Model
3.2. Simulation Model
- It must be a heritage construction typology (load walls and wood structure).
- The intervention of energy retrofit through thermal insulation must be carried out inside the wall.
- The wall must have a high water absorption coefficient.
- There must be a high rainfall rate.
- Winter severity must not be very high.
3.3. Materials, Properties, Climate, and Surface Transfer Conditions
4. Results and Discussion
4.1. One-Dimensional Analysis
4.2. Two-Dimensional Analysis
4.3. Wooden Decay Risk Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Parliament. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast); Official Journal of the European Union: Brussels, Belgium, 2010; p. L 153/13. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF (accessed on 13 August 2021).
- Economidou, M.; Atanasiu, B.; Despret, C.; Maio, J.; Nolte, I.; Rapf, O. Europe’s Buildings under the Microscope. A Country-by-Country Review of the Energy Performance of Buildings; Buildings Performance Institute Europe (BPIE): Brussels, Belgium, 2011. [Google Scholar]
- Agence Internationale de L’énergie Energy. Technology Perspectives 2012: Pathways to a Clean Energy System; OECD/IEA: Paris, France, 2012. [Google Scholar]
- Aksoezen, M.; Daniel, M.; Hassler, U.; Kohler, N. Building age as an indicator for energy consumption. Energy Build. 2015, 87, 74–86. [Google Scholar] [CrossRef]
- Azkarate, A.; Ruiz de Ael, M.J.; Santana, A. El Patrimonio Arquitectónico. Plan Vasco de Cultura; Servicio de Publicaciones del Gobierno Vasco: Vitoria-Gasteiz, Spain, 2003. [Google Scholar]
- Mazzarella, L. Energy retrofit of historic and existing buildings. The legislative and regulatory point of view. Energy Build. 2015, 95, 23–31. [Google Scholar] [CrossRef]
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J.L. Energy efficiency and thermal comfort in historic buildings: A review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- European Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; Official Journal of the European Union: Brussels, Belgium, 2018; p. L 156/75. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=ES (accessed on 13 August 2021).
- Hukka, A.; Viitanen, H.A. A mathematical model of mould growth on wooden material. Wood Sci. Technol. 1999, 33, 475–485. [Google Scholar] [CrossRef]
- Sedlbauer, K. Prediction of Mould Fungus Formation on the Surface of and Inside Building Components; Fraunhofer Institute for Building Physics: Stuttgart, Germany, 2001. [Google Scholar]
- Viitanen, H.; Toratti, T.; Makkonen, L.; Peuhkuri, R.; Ojanen, T.; Ruokolainen, L.; Räisänen, J. Towards modelling of decay risk of wooden materials. Eur. J. Wood Wood Prod. 2010, 68, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Viitanen, H. Modelling the time factor in the development of brown rot decay in pine and spruce sapwood-The effect of critical humidity and temperature conditions. Holzforschung 1997, 51, 99–106. [Google Scholar] [CrossRef]
- Hens, H. Heat, Air and Moisture Transfer in Highly Insulated Envelope Parts, Task 1: Modelling; Final Report, Modelling, International Energy Agency, Annex 24; Catholic University-Leuven, Laboratorium for Building Physics: Louvain, Belgium, 1996; Volume 1. [Google Scholar]
- Künzel, H.M.; Kiessl, K. Calculation of heat and moisture transfer in exposed building components. Int. J. Heat Mass Transf. 1996, 40, 159–167. [Google Scholar] [CrossRef]
- Glaser, H. Wärmeleitung und Feuchtigkeitsdurchgang durch Kühlraumisolierungen. Kältetechnik 1958, 3, 86–91. [Google Scholar]
- Glaser, H. Graphisches Verfahren zur Untersuchung von Diffusionsvorgängen. Kältetechnik 1959, 11, 345–349. [Google Scholar]
- ISO. Hygrothermal Performance of Building Components and Building Elements-Internal Surface Temperature to Avoid Critical Surface Humidity and Interstitial Condensation-Calculation Methods (ISO 13788: 2012); ISO: Geneve, Switzerland, 2013. [Google Scholar]
- Künzel, H.M. Simultaneous Heat and Moisture Transport in Building Components. One-and Two-Dimensional Calculation Using Simple Parameters; Fraunhofer Institute of Building Physics: Stuttgart, Germany, 1995. [Google Scholar]
- Häupl, P.; Grunewald, J.; Fechner, H.; Stopp, H. Coupled heat air and moisture transfer in building structures. Int. J. Heat Mass Transf. 1997, 40, 1633–1642. [Google Scholar] [CrossRef]
- Nicolai, A. Modeling and Numerical Simulation of Salt Transport and Phase Transitions in Unsaturated Porous Building Materials; Technische Universität Dresden: Dresden, Germany, 2007. [Google Scholar]
- Dos Santos, G.H.; Mendes, N. Combined heat, air and moisture (HAM) transfer model for porous muilding materials. J. Build. Phys. 2009, 32, 203–220. [Google Scholar] [CrossRef]
- Delgado, J.M.P.Q.; Barreira, E.; Ramos, N.M.M.; de Freitas, V.P. (Eds.) Hygrothermal Numerical Simulation Tools Applied to Building Physics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- CEN, EN. Hygrothermal Performance of Building Components and Building Elements-Assessment of Moisture Transfer by Numerical Simulation; EN 15026:2007; CEN EN: Brussels, Belgium, 2007. [Google Scholar]
- ASHRAE. Standard 160-2009, Criteria for Moisture-Control Design Analysis in Buildings; American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc.: Atlanta, GA, USA, 2009. [Google Scholar]
- WTA. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. Merkblatt 6-2, Simulation Wärme- und Feuchtetechnischer Prozesse (Simulation of Heat and Moisture Transfer); WTA: Ingolstadt, Germany, 2014. [Google Scholar]
- ASHRAE. Heat, Air, and Moisture Control in Building Assemblies-Fundamentals, Ch. 25 of 2013 ASHRAE Handbook of Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2013. [Google Scholar]
- Künzel, H.M. Effect of interior and exterior insulation on the hygrothermal behaviour of exposed walls. Mater. Struct. 1998, 31, 99–103. [Google Scholar] [CrossRef]
- Finken, G.R.; Bjarløv, S.P.; Peuhkuri, R.H. Effect of façade impregnation on feasibility of capillary active thermal internal insulation for a historic dormitory-A hygrothermal simulation study. Constr. Build. Mater. 2016, 113, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Guizzardi, M.; Carmeliet, J.; Derome, D. Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls. Constr. Build. Mater. 2015, 99, 159–168. [Google Scholar] [CrossRef]
- Künzel, H.M.; Kiessl, K. Drying of brick walls after impregnation. Int. Z. Bauinstandsetz. 1996, 2, 87–100. [Google Scholar] [CrossRef]
- Morelli, M.; Nielsen, T.R.; Scheffler, G.A.; Svendsen, S. Internal insulation of masonry walls with wooden floor beams in Northern humid climate, Thermal Perfor-mance of the Exterior Envelopes of Whole Buildings. In Proceedings of the 11th International Conference, Clearwater Beach, FL, USA, 5–9 December 2010. [Google Scholar]
- Harrestrup, M.; Svendsen, S. Full-scale test of an old heritage multi-storey building undergoing energy retrofitting with focus on internal insulation and moisture. Build. Environ. 2015, 85, 123–133. [Google Scholar] [CrossRef]
- Harrestrup, M.; Svendsen, S. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick façades. Build. Environ. 2016, 99, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Ueno, K. Masonry wall interior insulation retrofit embedded beam simulations. In Proceedings of the Building Enclosure Science & Technology Conference, BEST 3: High Performance Buildings–Combining Field Experience with Innovation, Atlanta, GA, USA, 2–4 April 2012. [Google Scholar]
- Ruisinger, U. Long-Term Measurements and Simulations of Five Internal Insulation Systems and Their Impact on Wooden Beam Heads, 2nd ed.; Central European Symposium on Building Physics: Vienna, Austria, 2013; pp. 1–27. [Google Scholar]
- Johansson, P.; Geving, S.; Hagentoft, C.; Jelle, B.P.; Rognvik, E.; Kalagasidis, A.S.; Time, B. Interior insulation retrofit of a historical brick wall using vacuum insulation panels: Hygrothermal numerical simulations and laboratory investigations. Build. Environ. 2014, 79, 31–45. [Google Scholar] [CrossRef] [Green Version]
- De Santoli, L.; d’Ambrosio Alfano, F.R. Energy efficiency and HVAC systems in existing and historical buildings. Rehva. Eur. HVAC J. 2014, 51, 44–48. [Google Scholar]
- Changeworks. Energy Heritage. A Guide to Improving Energy Efficiency in Traditional and Historic Homes; Changeworks, Resources for Life Ltd.: Edinburgh, Scotland, 2008. [Google Scholar]
- Pickles, D.; McCaig, I. Enegy Efficiency and Historic Buildings Application of Part L of the Building Regulations to Historic and Traditionally Constructed Buildings; English Heritage: London, UK, 2011. [Google Scholar]
- Troi, A.; Bastian, Z. Energy Efficiency Solutions for Historic Buildings: A Handbook; Birkhäuser: Basel, Switzerland, 2014. [Google Scholar]
- De Santoli, L. Guidelines on energy efficiency of cultural heritage. Energy Build. 2015, 86, 534–540. [Google Scholar] [CrossRef]
- Bastian, Z.; Feist, W.; Baumgärtner, C.; Ebel, W.; Gollwitzer, E.; Grove-Smith, J.; Kaufmann, B.; Krick, B.; Schnieders, J.; Schulz, T. Altbaumodernisierung mit Passivhauskomponenten; Passivhaus Institut: Darmstadt, Germany, 2009. [Google Scholar]
- López, M.; Yáñez, A.; Gomes da Costa, S.; Avellá, L. Actas del Congreso Internacional de Eficiencia Energética y Edificación Histórica. In Proceedings of the International Conference on Energy Efficiency and Historic Buildings, Madrid, Spain, 29–30 September 2014; Fundación de Casas Históricas y Singulares y Fundación Ars Civilis: Madrid, Spain, 2014. Available online: https://energyheritage.files.wordpress.com/2014/12/actas-proceedings-energy-efficiency-and-historic-buldings1.pdf (accessed on 14 September 2021).
- Bouw, M.; Dubois, S.; Dekeyser, L.; Vanhellemont, Y. Second International Conference on Energy Efficiency and Comfort of Historic Buildings. In Proceedings of the EECHB-2016: Second International Conference on Energy Efficiency and Comfort of Historic Buildings, Brussels, Belgium, 19–21 October 2016; Flanders Heritage Agency: Brussels, Belgium, 2016. Available online: https://www.eechb.eu/wp-content/uploads/2016/12/Proceedings_EECHB.pdf (accessed on 14 September 2021).
- CEN, EN. Conservation of Cultural Heritage—Guidelines for Improving the Energy Performance of Historic Buildings; European Committee for Standardization (CEN): Brussels, Belgium, 2017; Volume 16883. [Google Scholar]
- Phoenix, T. Lessons learned: ASHRAE’s approach in the refurbishment of historic and existing buildings. Energy Build. 2015, 95, 13–14. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Guideline 34-2019. Energy Guideline for Historic Buildings; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2019. [Google Scholar]
- Andreotti, M.; Bottino-Leone, D.; Calzolari, M.; Davoli, P.; Dias Pereira, L.; Lucchi, E.; Troi, A. Applied research of the hygrothermal behaviour of an internally insulated historic wall without vapour barrier: In situ measurements and dynamic simulations. Energies 2020, 13, 3362. [Google Scholar] [CrossRef]
- Pickles, D. Energy Efficiency and Historic Buildings. Draught-Proofing Windows and Doors; English Heritage: London, UK, 2012. [Google Scholar]
- Martín-Garín, A.; Millán-García, J.A.; Hidalgo-Betanzos, J.M.; Hernández-Minguillón, R.J.; Baïri, A. Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests. Energies 2020, 13, 6727. [Google Scholar] [CrossRef]
- Lucchi, E.; Polo Lopez, C.S.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 12113. [Google Scholar] [CrossRef]
- Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV technologies: Methodological and experimental assessment for architecturally sensitive areas. Energies 2020, 13, 4506. [Google Scholar] [CrossRef]
- Polo López, C.S.; Lucchi, E.; Leonardi, E.; Durante, A.; Schmidt, A.; Curtis, R. Risk-benefit assessment scheme for renewable solar solutions in traditional and historic buildings. Sustainability 2021, 13, 5246. [Google Scholar] [CrossRef]
- Garrecht, H.; Reeb, S.; Hernández, J.L.; Paci, G.; Corredera, Á.; Esposito, E.; del Conte, A. 3ENCULT–Efficient Energy for EU Cultural Heritage Project. Report D 4.5 Guideline for the Implementation of Monitoring System. Available online: https://www.3encult.eu/en/project/workpackages/monitoringcontrol/Documents/3ENCULT_4.5.pdf (accessed on 13 August 2021).
- Mesas-Carrascosa, F.J.; Verdú Santano, D.; de Larriva, J.E.M.; Ortíz Cordero, R.; Hidalgo Fernández, R.E.; García-Ferrer, A. Monitoring heritage buildings with open source hardware sensors: A case study of the mosque-cathedral of Córdoba. Sensors 2016, 16, 1620. [Google Scholar] [CrossRef] [PubMed]
- Martín-Garín, A.; Millán-García, J.A.; Baïri, A.; Millán-Medel, J.; Sala-Lizarraga, J.M. Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. Autom. Constr. 2018, 87, 201–214. [Google Scholar] [CrossRef]
- Martín-Garín, A.; Millán-García, J.A.; Baïri, A.; Gabilondo, M.; Rodríguez, A. IoT and cloud computing for building energy efficiency (Chapter 10). In Start-Up Creation: The Smart Eco-Efficient Built Environment, 2nd ed.; Woodhead Publishing: Kidlington, UK, 2020; pp. 235–265. [Google Scholar] [CrossRef]
- Lucchi, E.; Dias Pereira, L.; Andreotti, M.; Malaguti, R.; Cennamo, D.; Calzolari, M.; Frighi, V. Development of a Compatible, Low Cost and High Accurate Conservation Remote Sensing Technology for the Hygrothermal Assessment of Historic Walls. Electronics 2019, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Arumägi, E.; Mändel, M.; Kalamees, T. Method for Assessment of Energy Retrofit Measures in Milieu Valuable Buildings. Energy Procedia 2015, 78, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Cantin, R.; Burgholzer, J.; Guarracino, G.; Moujalled, B.; Tamelikecht, S.; Royet, B.G. Field assessment of thermal behaviour of historical dwellings in France. Build. Environ. 2010, 45, 473–484. [Google Scholar] [CrossRef]
- Straube, J.; Ueno, K.; Schumacher, C. Measure Guideline: Internal Insulation of Masonry Walls. 2012. Available online: https://www.nrel.gov/docs/fy12osti/54163.pdf (accessed on 13 August 2021).
- Fröhlich, B.; Schaefer, I. Leitfaden Innendämmung 2.0. 2015. Available online: http://www.dbz.de/media/downloads/leitfaden-innendaemmung.pdf (accessed on 13 August 2021).
- Little, J.; Ferraro, C.; Arregi, B. Assessing Risks in Insulation Retrofits Using Hygrothermal Software Tools. Heat and Moisture Transport in Internally Insulated Stone Walls. 2015. Available online: https://pub-prod-sdk.azurewebsites.net/api/file/a717454d-f79a-4303-b359-a67b0101cbfa (accessed on 13 August 2021).
- WTA. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. Merkblatt 6-4, Innendämmung Nach WTA I: Planungsleitfaden (Internal Thermal Insulation according to WTA I: Planning Guide); WTA: Ingolstadt, Germany, 2016. [Google Scholar]
- WTA. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. Merkblatt 6-5, Innendämmung Nach WTA II: Nachweis von Innendämmsystemen Mittels Numerischer Berechnungsverfahren (Interior Insulation According to WTA II: Evaluation of Internal Insulation Systems with Numerical Design Methods); WTA: Ingolstadt, Germany, 2014. [Google Scholar]
- May, N.; Sanders, C. Moisture in Buildings: An Integrated Approach Torisk Assessment and Guidance. 2014. Available online: http://shop.bsigroup.com/upload/279150/BSI-White-Paper-Moisture-In-Buildings.PDF (accessed on 13 August 2021).
- ISO. Hygrothermal Performance of Building Materials and Products–Determination of Water Absorption Coefficient by Partial Immersion; ISO: Geneve, Switzerland, 2002; p. 15148. [Google Scholar]
- CEN, EN. Conservation of Cultural Property Test Methods. Determination of Water Absorption by Capillarity; CEN European Committee for Standardization: Brussels, Belgium, 2009; p. 15801. [Google Scholar]
- Vereecken, E.; Roels, S. Capillary active interior insulation: Do the advantages really offset potential disadvantages? Mater. Struct. 2015, 48, 3009–3021. [Google Scholar] [CrossRef]
- Zhao, J.; Grunewald, J.; Ruisinger, U.; Feng, S. Evaluation of capillary-active mineral insulation systems for interior retrofit solution. Build. Environ. 2017, 115, 215–227. [Google Scholar] [CrossRef]
- Vereecken, E.; Roels, S. Capillary Active Interior Insulation Systems for Wall Retrofitting: A More Nuanced Story. Int. J. Arch. Herit. 2016, 10, 558–569. [Google Scholar] [CrossRef]
- Akkurt, G.G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Costanzo, V.; Del Pero, C.; Evola, G.; Huerto-Cardenas, H.E.; et al. Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renew. Sustain. Energy Rev. 2020, 118, 109509. [Google Scholar] [CrossRef]
- ISO. Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties—Cup Method; ISO: Geneve, Switzerland, 2016; p. 12572. [Google Scholar]
- CEN, EN. Conservation of Cultural Property Test Methods. Determination of Water Vapour Permeability (δp); CEN European Committee for Standardization: Brussels, Belgium, 2009; p. 15803. [Google Scholar]
- Künzel, H. Criteria defining rain protecting external rendering systems. Energy Procedia 2015, 78, 2524–2529. [Google Scholar] [CrossRef]
- CEN, EN. Conservation of Cultural Property Test Methods. Determination of Static Contact Angle; CEN European Committee for Standardization: Brussels, Belgium, 2009; p. 15802. [Google Scholar]
- Künzel, H.M. Flexible vapor control solves moisture problems of building assemblies-smart retarder to replace the conventional PE-film. J. Therm. Envel. Build. Sci. 1999, 23, 95–102. [Google Scholar] [CrossRef]
- WTA. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. Merkblatt 6-8, Feuchtetechnische Bewertung von Holzbauteilen-Vereinfachte Nachweise und Simulation (Assessment of Humidity in Timber Constructions–Simplified Verifications and Simulation); WTA: Ingolstadt, Germany, 2016. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rodríguez-Maribona, I.; Zalbide, M.; García Garmilla, F.; Ibáñez, J.A.; Garín, S. Conservation study of the stone material used in the Culture House of Almirante Oquendo, in San Sebastian. Mater. Constr. 1999, 1999, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, T.C. Climate index for estimating potential for decay in wood structures above ground. Forest Prod. J. 1971, 21, 25–31. Available online: https://www.fpl.fs.fed.us/documnts/pdf1971/schef71a.pdf (accessed on 13 August 2021).
- Brischke, C.; Frühwald Hansson, E.; Kavurmaci, D.; Thelandersson, S. Decay hazard mapping for Europe. In Proceedings of the IRG Annual Meeting, Queenstown, New Zealand, 8–12 May 2011. [Google Scholar]
- Fernandez-Golfin, J.; Larrumbide, E.; Ruano, A.; Galvan, J.; Conde, M. Wood decay hazard in Spain using the Scheffer index: Proposal for an improvement. Eur. J. Wood Wood Prod. 2016, 74, 591–599. [Google Scholar] [CrossRef]
- Etxeberría-Arquero, B. La Bella Easo y Lutecia: Bailes de espejos y simetrías imposibles. Arquitectura y urbanismo de Donostia 1813–1920. In Los Lugares de la Historia; Asociación de Jóvenes Historiadores(AJHIS): Salamanca, Spain, 2013; pp. 343–362. ISBN 978-84-616-5755-1. [Google Scholar]
- Ayuntamiento de Donostia-San Sebastián, Departamento de Urbanismo. Plan Especial de Protección del Patrimonio Urbanístico Construido de San Sebastián; Ayuntamiento de Donostia-San Sebastián: Donostia-San Sebastián, Spain, 2013. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Remund, J.; Kunz, S. METEONORM: Global Meteorological Database for Solar Energy and Applied Climatology; Meteotest: Bern, Switzerland, 1997. [Google Scholar]
- Fraunhofer IBP WUFI. Modelling Water-Repellent Treatment of a Façade by Adjusting the A-Value. 2017. Available online: https://wufi.de/en/wp-content/uploads/sites/11/2014/09/Wufi1D_Water-repellent_treatment_of_facades.pdf (accessed on 13 August 2021).
- CEN DD CEN/TS. Thermal Modified Timber. Definitions and Characteristics; CEN European Committee for Standardization: Brussels, Belgium, 2007; p. 15679. [Google Scholar]
Material | Bulk Density (kg/m3) | Porosity (m3/m3) | Spec. Heat. Capacity (J/kg·K) | Thermal Conductivity (W/(m·K)) |
---|---|---|---|---|
Cottaer Sandstone | 2050 | 0.22 | 850 | 1.8 |
Mortar (historical) gypsum | 915 | 0.64 | 850 | 0.52 |
Spruce | 455 | 0.73 | 1400 | 0.23 |
EPS | 30 | 0.95 | 1500 | 0.04 |
Mineral Wool | 32.5 | 0.95 | 840 | 0.032 |
CAI | 100 | 0.96 | 850 | 0.042 |
Plaster | 1330 | 0.5 | 850 | 0.87 |
VDB | 130 | 0.001 | 2300 | 2.3 |
SVR | 85 | 0.086 | 2500 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Garín, A.; Millán-García, J.A.; Terés-Zubiaga, J.; Oregi, X.; Rodríguez-Vidal, I.; Baïri, A. Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope. Buildings 2021, 11, 410. https://doi.org/10.3390/buildings11090410
Martín-Garín A, Millán-García JA, Terés-Zubiaga J, Oregi X, Rodríguez-Vidal I, Baïri A. Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope. Buildings. 2021; 11(9):410. https://doi.org/10.3390/buildings11090410
Chicago/Turabian StyleMartín-Garín, Alexander, José Antonio Millán-García, Jon Terés-Zubiaga, Xabat Oregi, Iñigo Rodríguez-Vidal, and Abderrahmane Baïri. 2021. "Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope" Buildings 11, no. 9: 410. https://doi.org/10.3390/buildings11090410
APA StyleMartín-Garín, A., Millán-García, J. A., Terés-Zubiaga, J., Oregi, X., Rodríguez-Vidal, I., & Baïri, A. (2021). Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope. Buildings, 11(9), 410. https://doi.org/10.3390/buildings11090410