Measuring the Construction Project Resilience from the Perspective of Employee Behaviors
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Investigating the Employee Behaviors Using Systematic Literature Review
3.2. Building the Employee Relationship Network Using SNA
- (1)
- SNA-Cohesion
- (2)
- SNA-Centrality
- (3)
- SNA-Structural hole
- (4)
- SNA-Subgroup
3.3. Modeling the Employee Relationship Network by Determining the CEs
3.4. Calculating the Construction Project Resilience
3.5. Implements on Improving the Construction Project Resilience
4. Case Study
4.1. Background of the Selected Construction Project
4.2. Determining the Components of the SNA Model
4.3. Establishing the Final SNA Model
4.4. Results and Analysis
- (1)
- SNA graph and the descriptions
- (2)
- Employee behaviors indicators
- (3)
- The construction project resilience
5. Discussion
- (1)
- Robustness
- (2)
- Redundancy
- (3)
- Rapidity
- (4)
- Resourcefulness
6. Summary and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, J.; McCurry, N. Unintended consequences: How the use of leed can inadvertently fail to benefit the environment. J. Green Build. 2006, 1, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Muench, S.T.; Anderson, J.L.; Söderlund, M. Greenroads: A sustainability performance metric for roadways. J. Green Build. 2010, 5, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Udawatta, N.; Zuo, J.; Chiveralls, K.; Yuan, H.; Zillante, G.; Elmualim, A. Major factors impeding the implementation of waste management in Australian construction projects. J. Green Build. 2018, 13, 101–121. [Google Scholar] [CrossRef]
- Zuo, J.; Xia, B.; Chen, Q.; Pullen, S.; Skitmore, M. Green building rating for office buildings—Lessons learned. J. Green Build. 2016, 11, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Nesensohn, C.; Demir, S.T.; Bryde, D.J. Developing the true north route map as a navigational compass in a construction project management organisation. Lean Constr. J. 2013, 2013, 1–18. [Google Scholar]
- Wu, J. Aspects of Learning in Construction Organizations: The Need for Change. In Proceedings of the Queensland University of Technology Research Week International Conference, QUT Research Week 2005, Brisbane, QLD, Australia, 4–5 July 2005. [Google Scholar]
- Brady, D.A.; Tzortzopoulos, P.; Rooke, J.; Formoso, C.T.; Tezel, A. Improving transparency in construction management: A visual planning and control model. Eng. Constr. Archit. Manag. 2018, 25, 1277–1297. [Google Scholar] [CrossRef] [Green Version]
- Li, X.K.; Wang, X.M.; Lei, L. The application of an ANP-Fuzzy comprehensive evaluation model to assess lean construction management performance. Eng. Constr. Archit. Manag. 2020, 27, 356–384. [Google Scholar] [CrossRef]
- Xing, W.; Hao, J.L.; Qian, L.; Tam, V.W.Y.; Sikora, K.S. Implementing lean construction techniques and management methods in Chinese projects: A case study in Suzhou, China. J. Clean. Prod. 2021, 286, 124944. [Google Scholar] [CrossRef]
- Mellado, F.; Lou, E.C.W. Building information modelling, lean and sustainability: An integration framework to promote performance improvements in the construction industry. Sustain. Cities Soc. 2020, 61, 102355. [Google Scholar] [CrossRef]
- Muñoz-Villamizar, A.; Santos, J.; Montoya-Torres, J.; Velázquez-Martínez, J. Measuring environmental performance of urban freight transport systems: A case study. Sustain. Cities Soc. 2020, 52, 101844. [Google Scholar] [CrossRef]
- Bae, J.; Kim, Y. Sustainable value on construction projects and lean construction. J. Green Build. 2008, 3, 155–167. [Google Scholar] [CrossRef]
- Chiera, M.; Lupi, F.; Rossi, A.; Lanzetta, M. Lean maturity assessment in eto scenario. Appl. Sci. 2021, 11, 3833. [Google Scholar] [CrossRef]
- Lagarda-Leyva, E.A. System dynamics and lean approach: Development of a technological solution in a regional product packaging company. Appl. Sci. 2021, 11, 7938. [Google Scholar] [CrossRef]
- Tran, T.A.; Ruppert, T.; Abonyi, J. Indoor positioning systems can revolutionise digital lean. Appl. Sci. 2021, 11, 5291. [Google Scholar] [CrossRef]
- Alattyih, W.; Haider, H.; Boussabaine, H. Risk factors impacting the project value created by green buildings in Saudi Arabia. Appl. Sci. 2020, 10, 7388. [Google Scholar] [CrossRef]
- Yoo, M.; Kim, J.; Choi, C. Effects of BIM-based construction of prefabricated steel framework from the perspective of SMEs. Appl. Sci. 2019, 9, 1732. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, W.; Xue, F.; Xu, J. A cost-benefit analysis of green buildings with respect to construction waste minimization using big data in Hong Kong. J. Green Build. 2018, 13, 61–76. [Google Scholar] [CrossRef]
- Pushkar, S.; Verbitsky, O. Silver and gold leed commercial interiors: Certified projects. J. Green Build. 2019, 14, 95–113. [Google Scholar] [CrossRef]
- He, Z.; Chen, H.; Yan, H.; Yin, Y.; Qiu, Q.; Wang, T. Scenario-Based Comprehensive Assessment for Community Resilience Adapted to Fire Following an Earthquake, Implementing the Analytic Network Process and Preference Ranking Organization Method for Enriched Evaluation II Techniques. Buildings 2021, 11, 523. [Google Scholar] [CrossRef]
- Wang, J.; Pan, W. Influencing parameters of the life cycle cost-energy relationship of buildings. J. Green Build. 2018, 13, 103–121. [Google Scholar] [CrossRef]
- Zezhou, W.; Yu, A.T.W.; Wang, H.; Wei, Y.; Huo, X. Driving factors for construction waste minimization: Empirical studies in Hong Kong and Shenzhen. J. Green Build. 2019, 14, 155–167. [Google Scholar]
- Gurgun, A.P.; Arditi, D.; Vilar, P.C. Impacts of construction risks on costs in leed-certified projects. J. Green Build. 2016, 11, 163–181. [Google Scholar] [CrossRef]
- He, Z.; Chen, H. An ism-based methodology for interrelationships of critical success factors for construction projects in ecologically fragile regions: Take korla, China as an example. Appl. Sci. 2021, 11, 4668. [Google Scholar] [CrossRef]
- Baker, M.; Ali, M.; French, E. Leadership Diversity and Its Influence on Equality Initiatives and Performance: Insights for Construction Management. J. Constr. Eng. Manag. 2021, 147, 04021123. [Google Scholar] [CrossRef]
- Imam, H. Roles of Shared Leadership, Autonomy, and Knowledge Sharing in Construction Project Success. J. Constr. Eng. Manag. 2021, 147, 04021067. [Google Scholar] [CrossRef]
- Johannes, K.; Theodorus Voordijk, J.; Marias Adriaanse, A.; Aranda-Mena, G. Identifying Maturity Dimensions for Smart Maintenance Management of Constructed Assets: A Multiple Case Study. J. Constr. Eng. Manag. 2021, 147, 05021007. [Google Scholar] [CrossRef]
- Pariafsai, F.; Behzadan, A.H. Core Competencies for Construction Project Management: Literature Review and Content Analysis. J. Civil Eng. Educ. 2021, 147, 04021010. [Google Scholar] [CrossRef]
- Herrera, R.F.; Mourgues, C.; Alarcón, L.F.; Pellicer, E. Analyzing the Association between Lean Design Management Practices and BIM Uses in the Design of Construction Projects. J. Constr. Eng. Manag. 2021, 147, 04021010. [Google Scholar] [CrossRef]
- Shou, W.; Wang, J.; Wu, P.; Wang, X. Lean management framework for improving maintenance operation: Development and application in the oil and gas industry. Prod. Plan. Control 2021, 32, 585–602. [Google Scholar] [CrossRef]
- Eldeep, A.M.; Farag, M.A.M.; Abd El-hafez, L.M. Using BIM as a lean management tool in construction processes—A case study: Using BIM as a lean management tool. Ain Shams Eng. J. 2021, 13, 101556. [Google Scholar] [CrossRef]
- Ardila, F.; Francis, A. Spatiotemporal Planning of Construction Projects: A Literature Review and Assessment of the State of the Art. Front. Built Environ. 2020, 6, 128. [Google Scholar] [CrossRef]
- He, Z.; Chen, H. Critical factors for practicing sustainable construction projects in environmentally fragile regions based on interpretive structural modeling and cross-impact matrix multiplication applied to classification: A case study in China. Sustain. Cities Soc. 2021, 74, 103238. [Google Scholar] [CrossRef]
- Cheng, B.; Lu, K.; Li, J.; Chen, H.; Luo, X.; Shafique, M. Comprehensive assessment of embodied environmental impacts of buildings using normalized environmental impact factors. J. Clean. Prod. 2021, 334, 130083. [Google Scholar] [CrossRef]
- Bamana, F.; Lehoux, N.; Cloutier, C. Simulation of a Construction Project: Assessing Impact of Just-in-Time and Lean Principles. J. Constr. Eng. Manag. 2019, 145, 05019005. [Google Scholar] [CrossRef]
- Qin, L.; Wang, M.; Zhu, J.; Wei, Y.; Zhou, X.; He, Z. Towards Circular Economy through Waste to Biomass Energy in Madagascar. Complexity 2021, 2021, 5822568. [Google Scholar] [CrossRef]
- Abdelmageed, S.; Zayed, T. A study of literature in modular integrated construction—Critical review and future directions. J. Clean. Prod. 2020, 277, 124044. [Google Scholar] [CrossRef]
- Bajjou, M.S.; Chafi, A. Empirical study of schedule delay in Moroccan construction projects. Int. J. Constr. Manag. 2020, 20, 783–800. [Google Scholar] [CrossRef]
- Erri Pradeep, A.S.; Yiu, T.W.; Zou, Y.; Amor, R. Blockchain-aided information exchange records for design liability control and improved security. Autom Constr. 2021, 126, 103667. [Google Scholar] [CrossRef]
- Hou, C.; Wen, Y.; He, Y.; Liu, X.; Wang, M.; Zhang, Z.; Fu, H. Public stereotypes of recycled water end uses with different human contact: Evidence from event-related potential (ERP). Resour. Conserv. Recycl. 2021, 168, 105464. [Google Scholar] [CrossRef]
- Zohar, D.; Luria, G. A multilevel model of safety climate: Cross-level relationships between organization and group-level climates. J. Appl. Psychol. 2005, 90, 616. [Google Scholar] [CrossRef]
- Malik, S.; Taqi, M.; Martins, J.M.; Mata, M.N.; Pereira, J.M.; Abreu, A. Exploring the relationship between communication and success of construction projects: The mediating role of conflict. Sustainability 2021, 13, 4513. [Google Scholar] [CrossRef]
- Gardounis, F.; Chong, H.Y.; Wang, X. A conceptual framework for Social Network Analysis of Building Information Modelling in construction projects. In Proceedings of the 5th International Conference on Research and Innovation in Information Systems, ICRIIS 2017, Langkawi, Malaysia, 16–17 July 2017; IEEE Computer Society: Washington, DC, USA, 2017. [Google Scholar]
- Alaghbari, W.; Al-Sakkaf, A.A.; Sultan, B. Factors affecting construction labour productivity in Yemen. Int. J. Constr. Manag. 2019, 19, 79–91. [Google Scholar] [CrossRef]
- Chi, B.; Lu, W.; Ye, M.; Bao, Z.; Zhang, X. Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. J. Clean. Prod. 2020, 256, 120749. [Google Scholar] [CrossRef]
- Cordero, A.S.; Melgar, S.G.; Márquez, J.M.A. Green building rating systems and the new framework level(s): A critical review of sustainability certification within Europe. Energies 2019, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Georgiadou, M.C. An overview of benefits and challenges of building information modelling (BIM) adoption in UK residential projects. Constr. Innov. 2019, 19, 298–320. [Google Scholar] [CrossRef]
- Zaman, U. Examining the effect of xenophobia on “transnational” mega construction project (MCP) success: Moderating role of transformational leadership and high-performance work (HPW) practices. Eng. Constr. Archit. Manag. 2020, 27, 1119–1143. [Google Scholar] [CrossRef]
- Laurent, J.; Leicht, R.M. Practices for Designing Cross-Functional Teams for Integrated Project Delivery. J. Constr. Eng. Manag. 2019, 145, 05019001. [Google Scholar] [CrossRef]
- Yiu, N.S.N.; Chan, D.W.M.; Shan, M.; Sze, N.N. Implementation of safety management system in managing construction projects: Benefits and obstacles. Saf. Sci. 2019, 117, 23–32. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, G.; Xie, H.; Li, H. Leadership, organizational culture, and innovative behavior in construction projects: The perspective of behavior-value congruence. Int. J. Manag. Proj. Bus. 2019, 12, 888–918. [Google Scholar] [CrossRef]
- Cruz-González, C.; Pérez Muñoz, M.; Domingo Segovia, J. Marta’s story: A female principal leading in challenge contexts. Sch. Leadersh. Manag. 2020, 40, 384–405. [Google Scholar] [CrossRef]
- Graham, P.; Nikolova, N.; Sankaran, S. Tension between Leadership Archetypes: Systematic Review to Inform Construction Research and Practice. J. Manag. Eng. 2020, 36, 03119002. [Google Scholar] [CrossRef]
- Ali, A.; Wang, H.; Soomro, M.A.; Islam, T. Shared Leadership and Team Creativity: Construction Industry Perspective. J. Constr. Eng. Manag. 2020, 146, 04020122. [Google Scholar] [CrossRef]
- Fang, D.; Huang, Y.; Guo, H.; Lim, H.W. LCB approach for construction safety. Saf. Sci. 2020, 128, 104761. [Google Scholar] [CrossRef]
- Tengan, C.; Aigbavboa, C. Validating factors influencing monitoring and evaluation in the Ghanaian construction industry: A Delphi study approach. Int. J. Constr. Manag. 2021, 21, 223–234. [Google Scholar] [CrossRef]
- Adu, E.T.; Opawole, A. Assessment of performance of teamwork in construction projects delivery in South-Southern Nigeria. J. Eng. Des. Technol. 2020, 18, 230–250. [Google Scholar] [CrossRef]
- Goodwill, J.R.; Anyiwo, N.; Williams, E.G.; Johnson, N.C.; Mattis, J.S.; Watkins, D.C. Media representations of popular culture figures and the construction of black masculinities. Psychol. Men Masc. 2019, 20, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Lijauco, F.; Gajendran, T.P.D.; Brewer, G.; Rasoolimanesh, S.M. Impacts of Culture on Innovation Propensity in Small to Medium Enterprises in Construction. J. Constr. Eng. Manag. 2020, 146, 04019116. [Google Scholar] [CrossRef]
- Lusiani, M.; Langley, A. The social construction of strategic coherence: Practices of enabling leadership. Long Range Plan. 2019, 52, 101840. [Google Scholar] [CrossRef]
- Hartono, B.; Sulistyo, S.; Umam, M. Leadership profiles of successful project managers in Indonesia. J. Ind. Eng. Manag. 2019, 12, 274–301. [Google Scholar] [CrossRef]
- Yap, J.B.H.; Lee, K.Y.; Skitmore, M. Analysing the causes of corruption in the Malaysian construction industry. J. Eng. Des. Technol. 2020, 18, 1823–1847. [Google Scholar] [CrossRef]
- Meng, X. The effect of relationship management on project performance in construction. Int. J. Proj. Manag. 2012, 30, 188–198. [Google Scholar] [CrossRef]
- Erpay, M.Y.; Sertyesilisik, B. Preliminary checklist proposal for enhancing bim-based construction project contracts. J. Inf. Technol. Constr. 2021, 26, 341–365. [Google Scholar] [CrossRef]
- Szostek, D. Employee behaviors toward using and saving energy at work. the impact of personality traits. Energies 2021, 14, 3404. [Google Scholar] [CrossRef]
- Xiang, L.; Tan, Y.; Jin, X.; Shen, G. Understanding stakeholders’ concerns of age-friendly communities at the briefing stage: A preliminary study in urban China. Eng. Constr. Archit. Manag. 2021, 28, 31–54. [Google Scholar] [CrossRef]
- Xue, J.; Shen, G.Q.; Yang, R.J.; Zafar, I.; Ekanayake, E.M.A.C. Dynamic Network Analysis of Stakeholder Conflicts in Megaprojects: Sixteen-Year Case of Hong Kong-Zhuhai-Macao Bridge. J. Constr. Eng. Manag. 2020, 146, 04020103. [Google Scholar] [CrossRef]
- Bianchi, P.; Cappelletti, G.M.; Mafrolla, E.; Sica, E.; Sisto, R. Accessible tourism in natural park areas: A social network analysis to discard barriers and provide information for people with disabilities. Sustainability 2020, 12, 9915. [Google Scholar] [CrossRef]
- Cehan, A.; Eva, M.; Iaţu, C.; Costa, C. Inquiring structure and forms of collaboration in tourism through social network analysis. Sustainability 2020, 12, 8161. [Google Scholar] [CrossRef]
- Choi, Y.; Cho, Y.I. Learning analytics using social network analysis and Bayesian network analysis in sustainable computer-based formative assessment system. Sustainability 2020, 12, 7950. [Google Scholar] [CrossRef]
- Franks, D.W.; Weiss, M.N.; Silk, M.J.; Perryman, R.J.Y.; Croft, D.P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. 2021, 12, 33–41. [Google Scholar] [CrossRef]
- Gallardo, E.C.; de Arroyabe, J.C.F.; Arranz, N. Preventing internal COVID-19 outbreaks within businesses and institutions: A methodology based on social networks analysis for supporting occupational health and safety services decision making. Sustainability 2020, 12, 4655. [Google Scholar] [CrossRef]
- Guevara, J.; Salazar, J.; Garvin, M.J. Social Network Analysis of Road PPP Equity Markets in Canada, Chile, and the United States. J. Manag. Eng. 2020, 36, 04020058. [Google Scholar] [CrossRef]
- Herrera, R.F.; Mourgues, C.; Alarcón, L.F.; Pellicer, E. Understanding Interactions between Design Team Members of Construction Projects Using Social Network Analysis. J. Constr. Eng. Manag. 2020, 146, 04020053. [Google Scholar] [CrossRef]
- Nunes, M.; Abreu, A. Applying social network analysis to identify project critical success factors. Sustainability 2020, 12, 1503. [Google Scholar] [CrossRef] [Green Version]
- Ludovico, N.; Dessi, F.; Bonaiuto, M. Stakeholders mapping for sustainable biofuels: An innovative procedure based on computational text analysis and social network analysis. Sustainability 2020, 12, 10317. [Google Scholar] [CrossRef]
- Narayan, A.S.; Fischer, M.; Lüthi, C. Social Network Analysis for Water, Sanitation, and Hygiene (WASH): Application in Governance of Decentralized Wastewater Treatment in India Using a Novel Validation Methodology. Front. Environ. Sci. 2020, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, N.; Anbarasi, L.J. Exploration of the global air transport network using social network analysis. Soc. Netw. Anal. Min. 2021, 11, 26. [Google Scholar] [CrossRef]
- Nunes, M.; Abreu, A. Managing open innovation project risks based on a social network analysis perspective. Sustainability 2020, 12, 3132. [Google Scholar] [CrossRef]
- Nurek, M.; Michalski, R. Combining machine learning and social network analysis to reveal the organizational structures. Appl. Sci. 2020, 10, 1699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhao, Y.; Zhu, X.; Cai, Z.; Xu, J.; Shi, S. Spatial structure of urban agglomeration under the impact of high-speed railway construction: Based on the social network analysis. Sustain. Cities Soc. 2020, 62, 102404. [Google Scholar] [CrossRef]
- Shabani Ardakani, S.; Nik-Bakht, M. Functional Evaluation of Change Order and Invoice Management Processes under Different Procurement Strategies: Social Network Analysis Approach. J. Constr. Eng. Manag. 2021, 147, 04020155. [Google Scholar] [CrossRef]
- Yip, W.S.; To, S. A critical analysis of sustainable micro-manufacturing from the perspective of the triple bottom line: A social network analysis. Environ. Impact Assess. Rev. 2021, 90, 106628. [Google Scholar] [CrossRef]
- Yip, W.S.; To, S. Identification of stakeholder related barriers in sustainable manufacturing using Social Network Analysis. Sustain. Prod. Consum. 2021, 27, 1903–1917. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Pearce, A.R. Green construction: Contractor experiences, expectations, and perceptions. J. Green Build. 2007, 2, 106–122. [Google Scholar] [CrossRef]
- Gou, Z.; Lau, S.S.Y.; Prasad, D. Market readiness and policy implications for green buildings: Case study from Hong Kong. J. Green Build. 2013, 8, 162–173. [Google Scholar] [CrossRef]
- Horman, M.J.; Riley, D.; Lapinski, A.R.; Korkmaz, S.; Pulaski, M.H.; Magent, C.S.; Luo, Y.; Harding, N.; Dahl, P.K. Delivering green buildings: Process improvements for sustainable construction. J. Green Build. 2006, 1, 123–140. [Google Scholar] [CrossRef]
- Cajot, S.; Peter, M.; Bahu, J.M.; Guignet, F.; Koch, A.; Maréchal, F. Obstacles in energy planning at the urban scale. Sustain. Cities Soc. 2017, 30, 223–236. [Google Scholar] [CrossRef]
- Kodysh, J.B.; Omitaomu, O.A.; Bhaduri, B.L.; Neish, B.S. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustain. Cities Soc. 2013, 8, 31–41. [Google Scholar] [CrossRef]
- Al-Saeed, Y.; Edwards, D.J.; Scaysbrook, S. Automating construction manufacturing procedures using BIM digital objects (BDOs): Case study of knowledge transfer partnership project in UK. Constr. Innov. 2020, 20, 345–377. [Google Scholar] [CrossRef]
- Molenaar, K.R.; Sobin, N.; Antillón, E.I. A synthesis of best-value procurement practices for sustainable design-build projects in the public sector. J. Green Build. 2010, 5, 148–157. [Google Scholar] [CrossRef]
- Pearce, A.R.; Dubose, J.R.; Bosch, S.J. Green building policy options for the public sector. J. Green Build. 2007, 2, 156–174. [Google Scholar] [CrossRef]
- Alam, M.; Zou, P.X.W.; Stewart, R.A.; Bertone, E.; Sahin, O.; Buntine, C.; Marshall, C. Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustain. Cities Soc. 2019, 44, 56–69. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q. Critical success factors for modular integrated construction projects: A review. Build. Res. Inf. 2020, 48, 763–784. [Google Scholar] [CrossRef]
- MacDougall, C. Natural building materials in mainstream construction: Lessons from the U.K. J. Green Build. 2008, 3, 3–14. [Google Scholar] [CrossRef]
- Ross, B.; López-Alcalá, M.; Small Iii, A.A. Modeling the private financial returns from green building investments. J. Green Build. 2007, 2, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Doulos, L.T.; Sioutis, I.; Kontaxis, P.; Zissis, G.; Faidas, K. A decision support system for assessment of street lighting tenders based on energy performance indicators and environmental criteria: Overview, methodology and case study. Sustain. Cities Soc. 2019, 51, 101759. [Google Scholar] [CrossRef]
- Huo, X.; Yu, A.T.W. Analytical review of green building development studies. J. Green Build. 2017, 12, 130–148. [Google Scholar] [CrossRef]
- Schroepfer, T.; Hee, L. Emerging forms of sustainable urbanism: Case studies of vauban freiburg and solarcity linz. J. Green Build. 2008, 3, 67–76. [Google Scholar] [CrossRef]
- Hama, S.M.L.; Kumar, P.; Harrison, R.M.; Bloss, W.J.; Khare, M.; Mishra, S.; Namdeo, A.; Sokhi, R.; Goodman, P.; Sharma, C. Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustain. Cities Soc. 2020, 54, 102003. [Google Scholar] [CrossRef]
- Durdyev, S.; Hosseini, M.R. Causes of delays on construction projects: A comprehensive list. Int. J. Manag. Proj. Bus. 2020, 13, 20–46. [Google Scholar] [CrossRef]
- Luong, D.L.; Tran, D.H.; Nguyen, P.T. Optimizing multi-mode time-cost-quality trade-off of construction project using opposition multiple objective difference evolution. Int. J. Constr. Manag. 2021, 21, 271–283. [Google Scholar] [CrossRef]
- Cook, E.A. Green site design: Strategies for storm water management. J. Green Build. 2007, 2, 46–56. [Google Scholar] [CrossRef]
- Grant, E.J.; Jones, J.R. A decision-making framework for vegetated roofing system selection. J. Green Build. 2008, 3, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Tucker, S.; Newton, P. Automated material selection and environmental assessment in the context of 3D building modelling. J. Green Build. 2007, 2, 51–61. [Google Scholar] [CrossRef]
- Ottosen, T.B.; Kumar, P. The influence of the vegetation cycle on the mitigation of air pollution by a deciduous roadside hedge. Sustain. Cities Soc. 2020, 53, 101919. [Google Scholar] [CrossRef]
- Austin, G. Case study and sustainability assessment of Bo01, Malmö, Sweden. J. Green Build. 2013, 8, 34–50. [Google Scholar] [CrossRef]
- Lehmann, S. Towards a sustainable city centre: Integrating ecologically sustainable development (esd) principles into Urban renewal. J. Green Build. 2006, 1, 86–104. [Google Scholar] [CrossRef]
- Li, X.; Strezov, V.; Amati, M. A qualitative study of motivation and influences for academic green building developments in Australian universities. J. Green Build. 2013, 8, 166–183. [Google Scholar] [CrossRef]
- Yadav, G.; Mangla, S.K.; Luthra, S.; Rai, D.P. Developing a sustainable smart city framework for developing economies: An Indian context. Sustain. Cities Soc. 2019, 47, 101462. [Google Scholar] [CrossRef]
- Alvarez, L.; Borsi, K.; Rodrigues, L. The role of social network analysis on participation and placemaking. Sustain. Cities Soc. 2017, 28, 118–126. [Google Scholar] [CrossRef]
- Hosseini, M.; El-Diraby, T.; Shalaby, A. Supporting sustainable system adoption: Socio-semantic analysis of transit rider debates on social media. Sustain. Cities Soc. 2018, 38, 123–136. [Google Scholar] [CrossRef]
- Lei, Y.; Zhou, Y.; Shi, J. Overlapping communities detection of social network based on hybrid C-means clustering algorithm. Sustain. Cities Soc. 2019, 47, 101436. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, L. Mutualism of intra- and inter-prefecture level cities and its effects on regional socio-economic development: A case study of Hubei Province, Central China. Sustain. Cities Soc. 2019, 44, 16–26. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Chen, P.H.; Seng Chew, D.A.; Teo, C.C.; Ding, R.G. Exploration of critical external partners of Architecture/Engineering/Construction (AEC) firms for delivering green building projects in Singapore. J. Green Build. 2012, 7, 193–209. [Google Scholar] [CrossRef]
- Russell, J.A.; Helms, C.R.; Everhart, R.C.; Miller, D.J. Applying project based learning in an undergraduate design and construction program at appalachian state university. J. Green Build. 2018, 13, 147–165. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Le, K.N. Predicting environmental performance of construction projects by using least-squares fitting method and robust method. J. Green Build. 2007, 2, 143–155. [Google Scholar] [CrossRef]
Code | Employee Behaviors | Data of Source |
---|---|---|
C1 | PMT cohesion | [85,86,87,88,89,90] |
C2 | Identity of the project culture | [91,92,93,94] |
C3 | Formal behavior between employees | [38,95,96,97] |
C4 | Collaborate efficacy | [98,99,100,101,102] |
C5 | Informal social constraints | [103,104,105,106] |
C6 | Reciprocity and mutual trust | [24,33,107,108,109,110] |
Employee Behaviors | Indicators | Parameters | |
---|---|---|---|
C1 | PMT cohesion | Cohesion | Density |
C2 | Identity of the project culture | Centrality | Degree centrality |
C3 | Formal behavior between employees | Betweenness centrality | |
C4 | Collaborate efficacy | Structural hole | Efficiency |
C5 | Informal social constraints | Constraint | |
C6 | Reciprocity and mutual trust | Subgroup | Cliques |
CEs NO. | Roles in the Construction Project | Years | Participants | Percentages |
---|---|---|---|---|
1 | Deputy project manager | 10 years | 2 | 7.69% |
2 | Business manager | 8 years | 1 | 3.84% |
3 | Chief engineer | 8 years | 2 | 7.69% |
4 | Cost engineer | 5 years | 2 | 7.69% |
5 | Safety and quality engineer | 3 years | 2 | 7.69% |
6 | Procurement engineer | 8 years | 3 | 11.53% |
7 | Construction crew | 5 years | 3 | 11.53% |
8 | Site engineer | 5 years | 4 | 15.38% |
9 | Construction contractor | 7 years | 2 | 7.69% |
10 | Consultant | 5 years | 3 | 11.53% |
11 | Designer | 10 years | 3 | 11.53% |
12 | Supervisors | 6 years | 1 | 3.84% |
Employee Behaviors (Ci) | Critical Employees | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | ||
C1 | PMT cohesion | 5 | 6 | 4 | 5 | 5 | 6 | 4 | 2 | 6 | 3 | 8 | 5 |
C2 | Identity of the project culture | 0.5 | 5.9 | 0.2 | 4.9 | 0.2 | 4.9 | 0.2 | 0.5 | 1 | 2.5 | 2.8 | 1.8 |
C3 | Formal behavior between employees | 80 | 53 | 83 | 80 | 33 | 64 | 33 | 73 | 60 | 0 | 64 | 50 |
C4 | Collaborate efficacy | 0.3 | 0.5 | 0.3 | 0.3 | 0.7 | 0.4 | 0.7 | 0.3 | 0.5 | 0.4 | 1 | 0.6 |
C5 | Informal social constraints | 0.6 | 0.4 | 0.7 | 0.5 | 0.6 | 0.4 | 0.7 | 0.5 | 0.5 | 0.4 | 0.3 | 0.5 |
C6 | Reciprocity and mutual trust | 2 | 2 | 3 | 2 | 1 | 6 | 1 | 3 | 1 | 6 | 0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Wang, G.; Chen, H.; Zou, Z.; Yan, H.; Liu, L. Measuring the Construction Project Resilience from the Perspective of Employee Behaviors. Buildings 2022, 12, 56. https://doi.org/10.3390/buildings12010056
He Z, Wang G, Chen H, Zou Z, Yan H, Liu L. Measuring the Construction Project Resilience from the Perspective of Employee Behaviors. Buildings. 2022; 12(1):56. https://doi.org/10.3390/buildings12010056
Chicago/Turabian StyleHe, Zheng, Genda Wang, Huihua Chen, Zhuojun Zou, Hongyan Yan, and Linlin Liu. 2022. "Measuring the Construction Project Resilience from the Perspective of Employee Behaviors" Buildings 12, no. 1: 56. https://doi.org/10.3390/buildings12010056
APA StyleHe, Z., Wang, G., Chen, H., Zou, Z., Yan, H., & Liu, L. (2022). Measuring the Construction Project Resilience from the Perspective of Employee Behaviors. Buildings, 12(1), 56. https://doi.org/10.3390/buildings12010056